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Abstract

Background: A challenge for practitioners using spinal manipulation is identifying when an
intervention is required. It has been recognized that joint pain can interfere with the ability to
position body parts accurately and that the recent history of muscle contraction can play a part in
that interference. In this study, we tested whether repositioning errors could be induced in a
normal population by contraction or shortening of the neck muscles.

Methods: In the experimental protocol, volunteers free of neck problems first found a
comfortable neutral head posture with eyes closed. They deconditioned their cervical muscles by
moving their heads 5 times in either flexion/extension or lateral flexion and then attempted to
return to the same starting position. Two conditioning sequences were interspersed within the
task: hold the head in an extended or laterally flexed position for 10 seconds; or hold a 70%
maximum voluntary contraction in the same position for 10 seconds. A computer-interfaced
electrogoniometer was used to measure head position while a force transducer coupled to an
auditory alarm signaled the force of isometric contraction. The difference between the initial and
final head orientation was calculated in 3 orthogonal planes. Analysis of variance (I-way ANOVA)
with a blocking factor (participants) was used to detect differences in proprioceptive error among
the conditioning sequences while controlling for variation between participants.

Results: Forty-eight chiropractic students participated: 36 males and |2 females, aged 28.2 + 4.8
yrs. During the neck extension test, actively contracting the posterior neck muscles evoked an
undershoot of the target position by 2.1° (p <0.001). No differences in repositioning were found
during the lateral flexion test.

Conclusion: The results suggest that the recent history of cervical paraspinal muscle contraction
can influence head repositioning in flexion/extension. To our knowledge this is the first time that
muscle mechanical history has been shown to influence proprioceptive accuracy in the necks of
humans. This finding may be used to elucidate the mechanism behind repositioning errors seen in
people with neck pain and could guide development of a clinical test for involvement of paraspinal
muscles in cervical pain and dysfunction.
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Introduction

An important consideration for practitioners using spinal
manipulation is knowing when to intervene (i.e., deter-
mining the presence of a manipulable lesion). A number
of local measures have been used to identify a dysfunc-
tional segment, including: tissue compliance, static and
motion palpation, x-ray, surface EMG, and thermography.
Global measures have also been used to determine the
region of the affected segment(s), such as leg length ine-
quality, sacro-occipital technique tests, and visual inspec-
tion of posture (reviewed in [1]). Because no gold
standard exists for the presence of a manipulable lesion,
the validity of many of these measures is unknown.

We are interested in determining if a proprioceptive test
could be applied to the neck that might serve as a global
measure of neuromuscular function and reveal differences
between normal subjects and those who respond to spinal
manipulation. As a first step toward this goal and as
described in this report, we sought to determine in a rela-
tively normal student population whether repositioning
errors of the neck could be induced based upon the thixo-
tropic properties of muscle spindles.

Thixotropic properties of skeletal muscle were first
described by Hill [2] for extrafusal muscle fibers where a
slow lengthening evokes a rapid rise in passive muscle ten-
sion that subsequently falls and plateaus to a constant
level of passive tension. Hill termed the marked muscle
stiffness at the beginning of the slow lengthening as a
short-range elastic component (SREC). The SREC was
attributed to spontaneous formation of actin-myosin
crossbridges in the extrafusal fibers of passive muscle,
crossbridges that form within several seconds of holding
the muscle at a fixed length prior to the slow lengthening
[2]. These crossbridges are relatively stable, having a
slower turnover rate compared with crossbridges that
underlie active muscle contraction.

Many studies also support the presence of the SREC in
intrafusal fibers, the effect of which alters the responsive-
ness of Group Ia and II spindle afferents whose receptive
endings are wound around the intrafusal fibers. Muscle
history induced by maintaining intrafusal fibers at a short-
ened length, either by passive shortening, by active
extrafusal muscle contraction, or by nerve stimulation suf-
ficient to activate gamma-motoneurons increases muscle
spindle responsiveness compared with not having previ-
ously shortened the intrafusal fibers [3-6]. The shortened
intrafusal fibers are thought to crosslink and stiffen at the
short length (see [7-9] for extensive discussions) and, with
subsequent stretch, these stiffened myofilaments deform
the receptive endings to a greater extent. On the other
hand, maintaining intrafusal fibers at a long length stiff-
ens the spindle apparatus at the longer length. As the mus-

http://www.chiroandosteo.com/content/14/1/5

cle is subsequently returned to a shorter length, the
stiffened intrafusal myofilaments become slack or kink
and the receptive endings are unloaded. When the
extrafusal muscle is stretched again, these slack intrafusal
fibers are not initially loaded and hence the onset of spin-
dle activity is delayed and spindle response is depressed.

Previous studies in humans and cats demonstrate that
muscle history affects muscle spindle discharge resulting
in proprioceptive consequences including alterations in
spindle mediated muscle reflexes and errors in limb repo-
sitioning [3-5,10-14]. In cats, isometric contraction of the
soleus muscle at a short length, as compared to isometric
contraction at a long length, increases muscle spindle dis-
charge to muscle stretch from identical intermediate posi-
tions [4]. In the lumbar spine of the cat, segmental
changes in vertebral position can affect muscle history
and the responsiveness of lumbar paraspinal muscle spin-
dles [15,16]. In cats and humans, muscle history affects
the magnitude of the stretch reflex and, at the same time,
produces converse effects on the H-reflex arising from
changes in resting spindle discharge [12,14]. Additionally,
actively contracting a shortened biceps brachii muscle
leads to errors in forearm position in humans [4]. To our
knowledge, the effects of muscle history in the cervical
spine on errors in repositioning are unknown.

Our specific aim was to determine if the mechanical his-
tory of cervical paraspinal muscles affects an asympto-
matic individual's ability to reposition his/her cervical
spine. We tested the following hypotheses: 1) when par-
ticipants passively hold their necks in an extended or lat-
erally flexed position for 10 seconds, they will
demonstrate a repositioning error that undershoots the
target position more than if they had not extended or lat-
erally flexed their neck; 2) active contraction of the cervi-
cal muscles to 70% of their maximum voluntary
contraction (MVC) while holding the neck extended or
laterally flexed for 10 seconds produces an even greater
repositioning error than seen with passive extension or
lateral flexion.

Methods

Both male and female volunteers were sought among the
student population of a chiropractic college. Participants
were included if they were between the ages of 20 and 40
yrs, had no recent incidence of cervical pain or trauma,
showed no abnormalities on screening cervical x-rays,
lacked cervical tenderness or muscle spasm with palpa-
tion, and had no gross limits upon cervical range of
motion examination. Participants accepted into the study
were shown a short video of the procedure, signed an
informed consent form approved by the Institutional
Review Board, and were randomly assigned to one of

Page 2 of 7

(page number not for citation purposes)



Chiropractic & Osteopathy 2006, 14:5

Figure |

Photographs of the experimental equipment. A) a participant
in the neutral position in preparation for an Extension test.
B) a participant in the extended position. The CA-6000 link-
age measures head position relative to the base affixed at the
first thoracic vertebra. Matching Lucite blocks, one attached
to the headband of the CA-6000, and the other attached to
the load cell, provide for alignment during the neck exten-
sion. In this position the patient can exert force against the
load cell for measuring maximum voluntary contraction dur-
ing the "Active Hold" conditioning.

twelve different testing sequences that randomized the
presentation order of experimental interventions.

Figure 1 shows the features of the experimental apparatus.
A computer interfaced electrogoniometer (CA-6000, OSI
Corporation, Union City, CA) was used to measure head
position and motion with respect to the upper thoracic
spine in the 3 cardinal planes: sagittal (AP-flexion), fron-
tal (lateral flexion), and horizontal (rotation). The CA-
6000 headpiece was fitted with a laser pointer to help par-
ticipants relocate their neutral head position between pro-
tocols. A force transducer (ESP-55, Transducer
Techniques, Temecula, CA) was used to measure the force
of an MVC by the neck muscles against a reference dock-
ing station. Mated pieces of a machined Lucite block were
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mounted to the CA-6000 headpiece and to the docking
station, thereby providing a reference stop position and
stabilizing the participant's head at the limit of move-
ment.

Each test began by having a participant locate a comforta-
ble, neutral head position. Participants were instructed to
close their eyes, nod a few times and then return their
head to a comfortable resting position. This became the
neutral target position and was identified by marking the
projection of the laser light on a large screen located 6' in
front of the participant. The inclination of the headpiece
with respect to vertical was recorded and MVC was deter-
mined separately with the neck extended 20° or left later-
ally flexed 25°. The examiner encouraged the participant
to contract into the docking station as much as possible in
order to achieve an MVC.

The experimental protocol began by having participants
locate their previously established neutral target position
by aligning the laser light with the screen mark. Partici-
pants maintained the neutral target position for 10 sec-
onds with eyes open and were then instructed to close
their eyes for the remainder of the protocol. Participants
maintained the neutral position for an additional 10 sec-
onds with eyes closed. Head position was recorded with
the CA-6000 using a sampling frequency of 100 Hz. Par-
ticipants deconditioned their neck muscles by performing
five 20° neck extensions or five 25° left lateral flexions
(hereafter referred to as lateral flexion) while the examiner
coached the participant to maintain a steady cadence
(0.75 cycle/sec using metronome feedback). Subse-
quently, one of three conditioning sequences was per-
formed.

1) "No Hold" conditioning: participants immediately
repositioned their heads to their perceived neutral target
position.

2) "Passive Hold" conditioning: participants extended
their necks 20° or laterally flexed them 25° and passively
maintained that position for 10 seconds.

3) "Active Hold" conditioning: identical to Passive Hold,
except that participants contracted their neck muscles for
10 seconds at the 20° extension or 25° lateral flexion
position producing at least 70% MVC.

The participant's 70% MVC was signaled by a program-
mable process meter with an audio alarm (DP25-E,
Omega Engineering, Inc., Stamford, CT) attached to the
docking station. Following each conditioning sequence,
participants attempted to reposition to the neutral target
position. Data was collected for 10 seconds while partici-
pants maintained their heads in the perceived target posi-
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Figure 2

A plot of raw AP-Flexion motion in the Extension test for
one participant. The sequence of activities is evident: 10 sec-
onds of static neutral posture at the initial target position,
followed by 5 deconditioning repetitions of neck extension.
In the "No Hold" condition, the patient attempts to retarget
to neutral immediately. In both "Passive Hold" and "Active
Hold," there is a 10-second delay in the extended position.
Vertical lines indicate the 5-second intervals over which aver-
age values were obtained for initial and final head orientation.
In this particular case, both the No Hold and Passive Hold
conditions produced an overshoot of the target position by
2.5 degrees. The Active Hold condition actually produced
more accurate repositioning.

tion, still with eyes closed. Neck extension and lateral
flexion tests were accomplished in random order. The 3
conditioning sequences were also performed in consecu-
tive but random order, yielding a randomized complete
block design.

Data were exported as text files and reduced using custom
software written in MathCad (Version 11, Mathsoft Inc,
Cambridge, MA). Variables of primary interest were the
average head orientation at the target position for 5 sec-
onds before deconditioning and the average head orienta-
tion at the target position for 5 seconds after conditioning
(see vertical lines in Figure 2 depicting the time intervals).
The difference between the initial and final orientation
was calculated in the 3 orthogonal planes and used as a
measure of proprioceptive error. Negative values indi-
cated repositioning that undershot the target position and
conversely, positive values indicated repositioning that
overshot the target position. Analysis of variance (1-way
ANOVA) with a block factor (participants) was used to
detect differences in proprioceptive error among the 3
conditioning sequences while controlling for variation
between participants. Six ANOVA tests were performed to
evaluate proprioceptive errors in 3 cardinal plane motions
for the two tests (neck extension and lateral flexion), but
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were not corrected for multiple testing. However, when
the F-test yielded significance, we performed post-hoc
tests using Hochberg correction for multiple pairwise
comparisons, alpha level 0.05.

Results

Forty-eight students participated, 36 males and 12
females. Ages ranged from 21-40 yrs (mean + SD = 28.2 +
4.8 yrs). Extension MVC magnitudes ranged from 55.0 -
194.8 N (113.5 + 35.2 N) and lateral flexion MVC ranged
from 33.0 - 177.2 N (85.7 + 31.4 N). Figure 2 shows a typ-
ical plot of the AP-flexion raw data for one participant
during the extension test.

During the neck extension test, No Hold and Passive Hold
conditioning sequences evoked AP flexion (sagittal plane)
overshoots of the neutral target position that were not sta-
tistically different from each other (0.72° and 0.75°,
respectively, Table 1). By contrast, the Active Hold condi-
tioning sequence evoked an undershoot of the target posi-
tion (-1.40°, Table 1) that was statistically significant
when compared with No Hold and Passive Hold condi-
tioning. This represented a 2.1° difference evoked by
Active Hold conditioning. Repositioning in the frontal
and horizontal planes showed no dependence on the con-
ditioning sequence during the extension test.

During the lateral flexion test, the 3 types of conditioning
sequences produced no differences in repositioning to the
neutral target within the same plane as the test, i.e., within
the frontal plane consisting of lateral flexion motion (p =
0.109). However, for orientation within the sagittal plane,
Active Hold conditioning produced an AP flexion over-
shoot (2.01°, Table 1) that was significantly greater than
that observed in No Hold conditioning. Repositioning in
the horizontal plane showed no dependence on the con-
ditioning sequence during the lateral flexion test.

Discussion

The aim of the present study was to determine if proprio-
ceptive errors based upon cervical paraspinal muscle his-
tory could be measured in normal subjects. We
hypothesized, based upon a thixotropic mechanism
(described in the Introduction), that participants who
maintained their cervical muscles passively shortened for
10 seconds would demonstrate a repositioning error that
undershot the target position and, in addition, that active
muscle contraction with the muscles at the same short-
ened length would produce an even greater repositioning
erTor.

The results of the extension test in our study are consistent
with a thixotropic mechanism and support our main the-
sis that the recent history of cervical paraspinal muscle
contraction accompanied by muscle shortening affects the
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Table I: Proprioceptive error calculated as the difference between the average initial reference position and the position on

retargeting after the conditioning sequence.

TEST Cardinal Plane (Motion) n Mean proprioceptive error by conditioning sequence. In Statistic (p)
degrees + SD
No Hold Passive Hold Active Hold
EXTENSION Sagittal Plane (AP-Flexion) 48 0.72 £ 2.6l 0.75 + 3.28 -1.40* £ 3.29 Fy94=8.85 (<0.001)
Frontal Plane (Lateral 45 0.05 + 1.21 -0.20 + 1.49 -0.01 +1.73 F, g8 = 0.54 (0.59)
Bending)
Horizontal Plane 48 0.12 + 1.57 -0.10 + 1.26 -0.05 + 2.09 Fy94 = 0.40 (0.67)
(Rotation)
LATERAL Sagittal Plane (AP-Flexion) 48 0.31 £2.44 0.93 +2.94 2.02t + 3.30 Fy94 = 6.70 (0.002)
FLEXION
Frontal Plane (Lateral 45 0.09 + 1.76 -0.07 £ 2.45 0.79 £ 2.37 Frgs=2.27 (0.11)
Bending)
Horizontal Plane 48 1.0l + 1.50 .18 + 1.92 1.17 £2.26 Fy94=10.15 (0.86)
(Rotation)

* Significantly different from 2 other conditioning sequences in post-hoc analysis (p < 0.002)
1 Significantly different from No Hold conditioning sequence in post-hoc analysis (p < 0.002)

ability of participants to accurately reposition their heads
to a neutral head position. We found a statistically signif-
icant difference in repositioning error in AP-flexion dur-
ing the extension task when the posterior muscles were
contracted with the head in an extended position. The
70% MVC used for the active contraction likely recruited
a substantial number of gamma-motoneurons because
gamma-motoneurons are coactivated with alpha-motone-
urons even at a low level of force [17]. Hutton et al. [18]
found that muscle history-induced repositioning errors of
elbow flexors were graded with the percent MVC and that
the errors were greatest when voluntary muscle contrac-
tion was maximal.

We expected the Passive Hold conditioning sequence to
produce a repositioning error similar in direction, but of
lesser magnitude than the Active Hold conditioning. Our
data, however, showed the Passive Hold repositioning
error to be similar in magnitude to the No Hold control.
The 20° neck extension we used to passively shortening
the posterior neck muscles may have been of insufficient
magnitude to adequately shorten the intrafusal fibers.

It was curious that the lateral flexion test was not similarly
affected by the Active Hold condition. We expected to see
a repositioning error in the main plane of repositioning
motion (i.e. lateral bending in the frontal plane, see Table
1). Instead, there was an overshoot in an orthogonal
plane (i.e. AP-flexion in the sagittal plane) that was signif-
icantly different from the No Hold condition. We think
this may have been a consequence of our experimental
setup. Participants often tucked their chins in order to seat
the mating pieces of the Lucite block. Hence, the condi-

tioning in lateral flexion was not a pure motion, but fre-
quently was accompanied by anteroflexion. The deep
anterior cervical flexors likely contracted, which could
have produced the AP flexion overshoot - just the con-
verse to the AP flexion undershoot seen in the extension
test. A future study employing electromyography might
help resolve this issue. The finding that repositioning
errors can be seen in motions orthogonal to the main test-
ing motion underscores the need for observing all planes
of motion during both the conditioning and reposition-
ing tasks.

Head repositioning tasks are not solely dependent on pro-
prioceptive input from muscle, but also depend on visual
and vestibular input. With multiple trials a learning effect
may also occur. We removed contributions from the vis-
ual system by having participants close their eyes through-
out the test. Differential effects of vestibular inputs were
minimized because head positions were identical during
passive and active conditioning (dictated by the shape of
the fixed Lucite block, see Figure 1) and because the dura-
tions of passive and active conditioning were identical.
The systematic effects of memory or learning were mini-
mized in that conditioning tasks were presented in ran-
dom order. Their potential contributions should have
been distributed equally across the conditioning proto-
cols. Thus, it seems a reasonable conclusion that the repo-
sitioning errors we measured arose from the effects of
muscle history we engendered.

Repositioning in the cervical spine has been used to assess
neck function. Several studies have examined the poten-
tial of repositioning errors after head movement for
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detecting abnormalities in the neck. Revel et al [19] asked
blindfolded patients to reposition their heads to a target
position subsequent to maximal unilateral rotation. Indi-
viduals with cervical pain did not reposition their heads as
well as individuals without cervical pain. Revel et al [19]
noted a consistent overshoot, which he attributed to a
search for additional proprioceptive information. In other
studies, active head repositioning to a target position is
impaired in individuals with whiplash [20] and dizziness
of suspected cervical origin [21], but not in individuals
with non-traumatic neck pain [22]. Several new
approaches have been used to present more involved
challenges to the neck's proprioceptive system in an effort
to provide a diagnostic or prognostic tool [23,24]. Inter-
estingly, these studies suggest that methods involving
complex movements or novel starting positions show
poor reproducibility, while more simple tests that attempt
to relocate the neutral head position, as was done in the
present study, are more accurate and reproducible.

The approach presented in this study may provide an eval-
uative tool to investigate the neck proprioceptive system
and thereby identify neuromuscular dysfunction and/or
its response to treatment. Since we were able to elicit a
repositioning error in normal, healthy student volunteers,
it raises the question of whether patients with neck prob-
lems, especially of non-traumatic origin, express reposi-
tioning errors different from non-symptomatic controls.
Perhaps patients with vertebral fixation or relative seg-
mental inflexibility identified as subluxations by chiro-
practors and somatic dysfunction by osteopaths are more
or less prone to the effects of muscle thixotropy. For exam-
ple, some neck conditions are already accompanied by
muscle contraction or increased muscle tone which might
occlude the effects we observed with Active Hold condi-
tioning or reveal effects from Passive Hold conditioning.
The clinical utility of this head repositioning test can be
provided by comparing a population of non-symptomatic
participants with others showing some clinical signs of
joint dysfunction in the neck.

Conclusion

The goal of this project was to investigate the possible use
of a muscle-based proprioceptive task as an evaluative
tool in the cervical spine. In normal subjects we found a
statistically significant difference in repositioning error in
AP-flexion during the extension task after isometric mus-
cle contraction for 10 seconds, suggesting that the recent
history of cervical paraspinal muscle contraction can
influence the ability to accurately reposition the head. The
condition of muscle shortening by resting the head in an
extended position for 10 seconds did not show a different
repositioning error from control. To our knowledge this is
the first time that muscle mechanical history has been
shown to influence proprioceptive accuracy in the necks
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of humans. This finding may be used to elucidate the
mechanism behind repositioning errors seen in people
with neck pain. We suggest that a clinical test might be
developed using a reposition task with active and passive
conditioning to test the involvement of paraspinal mus-
cles in cervical pain and dysfunction.
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