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Abstract

Background: Ultrasound imaging has been suggested for studying the structure and function of nerves and
muscles; however, reliability studies are limited to support the usage. The main aim of this study was to explore the
intrarater within-session reliability of evaluating the sciatic nerve and some related muscles morphology by
ultrasound imaging.

Methods: Three B-mode images from two scans (transverse and longitudinal) were acquired from the multifidus,
biceps femoris, soleus and medial gastrocnemius muscles bilaterally from 15 participants with sciatica and 15
controls in one session, 1-h apart. The data were collected from March to July 2017. Contraction ratio was
measured only by longitudinal scan, while the echo intensity was measured using maximum rectangular region of
interest in two scans (transverse and longitudinal) for all muscles. Cross-sectional area, direct (tracing) and indirect
(ellipsoid formula) methods were used to measure the sciatic nerve. Intraclass correlation coefficient (ICC 3,1),
standard error of measurement and minimal detectable change were calculated.

Results: Good to high ICCs (0.80–0.96) were found for muscle contraction ratio in the longitudinal scans in all the
muscles in both sciatica and control groups. For echo intensity measurements ICCs ranged from moderate to high,
with higher ICCs seen with the maximum region of interest in the transverse scans. The minimal detectable change
values ranged between 0.11 and 0.53 cm for contraction ratio.

Conclusions: Ultrasound imaging has high intrarater within-session reliability for assessing the sciatic nerve Cross-
sectional area and muscle contraction ratios. Transverse scans with the maximum region of interest result in higher
reliability. The sciatic Cross-sectional area is most accurately measured utilizing the direct tracing method rather
than the indirect ellipsoid method.
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Background
Low back pain with a clear pathoanatomical diagnosis of
lumbar radiculopathy is a common type of specific low
back pain (LBP) [1]. Sciatic neuropathy due to disc her-
niation is the most common peripheral entrapment
neuropathy that seen in musculoskeletal setting [2]. Sci-
atica due to disc herniation compressing a nerve root
may lead to disturbance in contractibility of multifidus,
biceps femoris, and gastrosoleus muscles innervated by
this nerve. To investigate the nerve and muscle morpho-
metric characteristics in sciatica, neuromuscular ultra-
sound imaging has been suggested for the assessment of
both nerve and muscle in patients with entrapment
neuropathy [3]. Compared to the magnetic resonance
imaging, ultrasound imaging is less expensive, more ac-
cessible, feasible and cost-effective [4]. This technique
can provide useful information about the muscle func-
tion / dysfunction [5]. However, regarding the muscle
size, it is important to ensure that the subject is cooper-
ating for either full relaxation or contraction because the
muscle dimensions change during contraction / relax-
ation. Intrarater reliability determines the stability of
data recorded by one individual across two or more tri-
als. Having acceptable reliability is essential for any kind
of measurement and for making valid decisions [6].
In addition to muscle contraction ratio (i.e. contracted

thickness/rest thickness), muscle echo intensity has been
recently suggested as a potential marker of muscle-tissue
status that can affect the muscle function [7]. Normal
muscle displays as a moderately hypoechoic structure in
the B-mode ultrasound image because of the low reflection
of the ultrasound wave (low echo intensity). Muscles have a
speckled look in a transverse scan, due to higher echo in-
tensity of the perimysium around muscle fiber bundles rela-
tive to the proper muscle tissue. Longitudinal scans usually
have better contrast in echo intensity between the muscle
fascicles and the perimysium connective tissue, and this
contrast in echo intensity is useful for defining the muscle
boundaries and characterization of the muscle architecture
[5, 8]. The echo intensity in an ultrasound image can be de-
termined as the average intensity of the pixels inside the
target muscle by a scale of gray levels within a given region
of interest (ROI) [9]. In the literature, the reliability of echo
intensity measures for muscles is controversial and there
are still questions regarding the most appropriate method

to collect such measures. In addition, the appropriate size
of ROI is questionable and some authors such as Caresio et
al. (2015) have suggested including as much of a muscle as
possible, but avoiding surrounding fascia and bones [7]. Im-
aging whole section of a muscle may be important since in-
ternal fascia and nonhomogeneous distribution of echo
intensity might affect the measures. The orientation of
muscle bundles might also affect the reliability of echo in-
tensity measures, particularly in longitudinal scans [7].
Sciatica may cause swelling of the sciatic nerve at the

posterior thigh level. Increased size and loss of echogeni-
city of compressed nerves are not well understood. This
may partly result from increased vascularity and edema
around the nerve. Some studies have investigated the re-
liability of nerve size and echogenicity of peripheral
nerves [10–13]. However, little is known about the reli-
ability of the cross-sectional area (CSA) and echogenicity
of the sciatic nerve at the posterior mid-thigh. Moreover,
the reliability of measuring nerve enlargement by ultra-
sound has received little attention in the literature, and
there is limited information on the reliability of morpho-
metric characteristics (CSA and echo intensity) of the
sciatic nerve, e.g. in patients with sciatica due to disc
herniation. One study has investigated the reliability and
validity of ultrasound imaging on the sciatic nerve CSA
and muscle thickness in healthy subjects with small sam-
ple size [14]; however, there is no study conducted to de-
termine the reliability of the sciatic nerve CSA and echo
intensity by ultrasound imaging in sciatica patients [15].
Therefore, the main aim of this study was to investi-

gate the intrarater within-day reliability of the nerve and
muscle morphometric characteristics in both transverse
and longitudinal scans, while utilizing a max rectangular
ROI or entire scanned section of the muscle (max ROI)
in sciatica patients and controls.

Methods
Participants
Fifteen patients, aged 30–50 years with the complaint of
LBP with unilateral radiculopathy (sciatica) lasting for a
minimum of three consecutive months participated volun-
tarily in this study (Table 1). Diagnosis was made by a
neurosurgeon based on the criteria recommended by Nijs
et al. (2015) (LBP with at least one symptom of pain, numb-
ness, or tingling radiating down to the leg and / or foot)

Table 1 Demographic data (mean ± SD) of the participants in each group (sciatica and control)

Group Age (year) BMI (kg/m2) Tenger scalea NPRSb back NPRS Leg ODIc Range

Sciatica (n = 15) 42 ± 14.1 24 ± 2.3 3 ± 0.1 4.8 ± 1.9 5.8 ± 1.6 35.7–40.1 ± 11.9–13.7

Control (n = 15) 41 ± 13.9 23.6 ± 2 3 ± 0.1 – – –

BMI Body mass index; aTegner Activity Scale, score 0–10 where 0 represents sick leave or disability pension, and 10 is participation in competitive sports. bNumeric
Pain Rating Scale, on scale 0–10, a score 1–3 indicates mild pain, 4–6 indicates moderate pain, 7–10 indicates severe pain. cODI: Oswestry Disability Index, on a
percentage scale, scores from 0 to 20% indicate a minimal disability, 21–40% indicate a moderate disability, 41–60% severe disability, 61% to 80% for crippled
and 81% to 100%
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confirmed by associated disc bulging or herniation and
nerve root compression between the vertebral level at
L4-L5 and L5-S1 on MRI [1]. In addition, 15 asymptomatic
individuals were recruited from the local population as the
control group with no history of LBP during the preceding
6 months, or dysfunction in the low back, thoracic, pelvis,
or lower extremities. The control group was matched with
the patient group regarding age and gender. Patients com-
pleted the Persian version of the Oswestry Disability Index
(ODI) [16], Tegner Activity Scale [17] and the Numerical
Pain Rating Scale (NPRS) [18]. Tegner Activity Scale is a
graduated list of activities of daily living, recreation, and
competitive sports; and the score scales from 0 to 10 where
0 represents sick leave or disability pension, and 10 is par-
ticipation in competitive sports [17]. Patients were excluded

if they had tumor / malignancy or bony defects in the lum-
bar region on MRI, systemic myopathy/neuropathy, previ-
ous surgery in the region of assessment, or evidence of
central sensitization in the mechanism of pain [1]. All par-
ticipants signed a consent form and the study was approved
by the Human Ethics Committee at Tehran University of
Medical Sciences, Tehran, Iran. The data were collected
from March to July 2017.

Apparatus
A diagnostic ultrasound imaging unit set in B-mode (Af-
finity 50 Philips-Netherland) with a linear-array probe
with 7–12 MHz band frequency was used to record the
images. The gain was set at 48% of the range, dynamic
range was maintained at 93 dB, and time compensation

Fig. 1 Muscle thickness in the longitudinal scan, the distance between the superficial and deep fascia. In the the longitudinal scan, the US probe
is placed parallel to the longitudinal axis of the target structure. MG: medial gastrocnemius muscle, SOL: soleus muscle

Fig. 2 Maximum region of interest (ROI) with histogram echo intensity in the longitudinal scan. A maximum ROI was defined for each image to
include as much of the muscle as possible, avoiding bone and surrounding fasciae. Histogram quantifies the greyscale of each pixel in arbitrary
units. MG: medial gastrocnemius muscle, SOL: soleus muscle
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was kept at the same (neutral) position for all images’
depths. The depth setting was adjusted for each muscle to
visualize their superior and inferior margins. Images were
recorded as JPEG files and stored on a computer for later
processing. ImageJ software (Version 1.48v, National Insti-
tutes of Health, Bethesda, MD, USA) was utilized to calcu-
late the muscle thickness and echo intensity as well as the
sciatic nerve CSA and echo intensity.

Data acquisition
Intrarater within-day reliability of ultrasound measure-
ments of contraction ratio and echo intensity was assessed
in all the participants. First, the examiner performed all
the measurements, and then, repeated the measurements
after 60 min in a random order (condition names picked
from a bowl) with the same procedure. To assess the
intrarater reliability, three ultrasound images were ac-
quired in the transverse and longitudinal views of four
muscles, i.e. multifidus, biceps femoris, medial gastrocne-
mius, soleus. Between each scan, the probe was moved
away from the nerve and muscle and then placed back
again over the same area of the nerve and muscle for the
next scan. All images were recorded at the end of expir-
ation and they were captured from two sides within one

session in the transverse and longitudinal views. Muscle
thickness was measured as the largest distance between
the superficial and deep fasciae, identified by their hypere-
choic appearance in the longitudinal scan (Fig. 1). Two
different ROIs were selected from the rest position to
measure the echo intensity. First, maximum ROI was
drawn for each scan to include as much of the muscle as
possible, avoiding bone and surrounding fasciae in two
scan views (Figs. 2 and 3). Second, to calculate max rect-
angular ROI, a rectangular ROI (as large as possible) was
positioned over the inner region of muscle image in two
scan views (Figs. 4 and 5). Echo intensity was then defined
as the mean level of gray within the ROI in 8-bit reso-
lution images (gray levels from 0 to 255, where black = 0
and white = 255) [7].
Direct and indirect methods were used to measure the

CSA of the sciatic nerve. In the direct method, the inner
border of the perineal echogenic rim that surrounds the
hypoechoic sciatic nerve was traced (Fig. 6). The indirect
method employed the formula for calculating an ellipsoid
area (major diameter × minor diameter × 3.14/4) (Fig. 7)
[19]. The major diameter is defined as the longest line be-
tween two points of the nerve that passes through the
center, whereas the minor diameter is the line through the

Fig. 3 Maximum region of interest with histogram echo intensity in the transverse scan. In the transverse scan, the US probe should be placed
perpendicular to the structure of interest. MG: medial gastrocnemius muscle, SOL: soleus muscle

Fig. 4 Maximum rectangular region of interest with histogram echo intensity in the longitudinal scan. MG: medial gastrocnemius muscle, SOL:
soleus muscle
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center of the nerve perpendicular to the major diameter.
All images were saved and exported for further analysis
and the examiner was blind to the images’ group alloca-
tion during processing the images by ImageJ software.

Ultrasonography of the sciatic nerve and biceps femoris
Ultrasonography of the sciatic nerve and biceps femoris
muscle was performed at the level of lower ¼ on the pos-
terior mid-thigh, along with a line from the ipsilateral iliac
crest to the popliteal crease. Longitudinal scans were used
to measure muscle thickness, and transverse scans pro-
vided a cross-sectional view of the biceps femoris and the
sciatic nerve [20]. Participant performed an isometric
prone hip extension with a straight knee (off the table to a
height of ~ 20 cm) to activate the biceps femoris muscle.

Ultrasonography of medial gastrocnemius and soleus
The medial gastrocnemius and soleus muscles were cap-
tured at the point of lower 1/3 of the tibial length from the
midpoint of the medial malleolus to the popliteal crease
[21]. Longitudinal scans were used to record the thickness

of the soleus and medial gastrocnemius, while transverse
scans provided only a cross-sectional view of the medial gas-
trosoleus. Participant rose on the toes (5-cm heel lift) while
standing to activate the soleus and medial gastrocnemius.

Ultrasonography of multifidus muscle
The multifidus muscle was imaged at the L5 vertebral
level of the lower back. To record longitudinal scans, the
US probe was placed ~ 2 cm lateral to the midline in a
way having the spinal facet joints clearly in the image. To
record transverse scans, the probe was spanned across the
spinous processes to have bilateral cross-sectional views of
the multifidus muscles. Participant laid prone and lifted
the ipsilateral leg off the table to a height of ~ 20 cm to ac-
tivate the multifidus muscle [22].

Statistical analysis
Data were presented as means ± standard deviations
(SDs). All statistical analyses were performed with SPSS

Fig. 5 Maximum rectangular region of interest (ROI) with histogram echo intensity in the transverse scan. Rectangular ROI was chosen in
each scan to include as much of the muscle as possible without any bone or surrounding fascia. MG: medial gastrocnemius muscle, SOL:
soleus muscle

Fig. 6 Sciatic nerve with trace cross-sectional area. In the direct
method, the inner border of the perineural echogenic rim that
surrounds the hypoechoic sciatic nerve was traced, and
measured nerve area by tracing along the hyperechoic
epineurium, approximating inside of the epineurium. BF: biceps
femoris muscle, SM: semimembranosus muscle

Fig. 7 Sciatic nerve with ellipse cross-sectional area. The major and
minor diameters and the formula of an ellipsoid to calculate the
area (major diameter × minor diameter × 3.14/4)
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statistical software version 24 (IBM Corporation, Chicago,
IL, USA) software package. Intra-session reliability for the
average of three measures in contraction ratio and echo
intensity was assessed by the intraclass correlation coeffi-
cient (ICC 3, 1; method: alpha, two-way mixed,
consistency). The ICCs are classified as follow: < 0.69,
poor correlation; 0.70–0.79, fair correlation; 0.80–0.89
good correlation; 0.90–1.00 high correlation [23]. The
standard error of measurement (SEM) and minimal de-
tectable change (MDC) were also calculated to make a
judgment about the degree that measurements vary for an
individual. The SEM values indicate the precision of the

measurement and were calculated based on the ICC and
the SD of the mean of differences between the two mea-
surements [SEM= SD√1 - ICC]. The MDC represents the
smallest change in a score within an individual that can be
considered as a real change above measurement error,
which was determined using the formula: [MDC =
1.96 × √2 × SEM] [24].

Results
The demographic data for both patients and controls are
summarized in Table 1. Both groups had very similar
age and BMI. The sciatica group had moderate to severe
pain and disability. Reliability data of muscle contraction
ratios are presented in Table 2. Within the patient
group, the affected side had a lower contraction ratio
with larger SD compared to the unaffected side. The re-
liability of the muscles was good to high (ICC = 0.82–
0.91) in both groups. The SEM and MDC ranged from
0.03–0.08 and 0.07–0.22 in the controls, and 0.04–0.08
and 0.13–0.22 in the sciatica group, respectively.
Table 3 reports the reliability and mean ± SD of two

methods (i.e., trace and ellipse) to measure the sciatic
nerve CSA as well as echogenicity. In general, the trace
method had higher ICC, and lower SEM and MDC com-
pared to the ellipse method. Reliability of echogenicity
ranged from 0.71 to 0.74; and 0.75 to 0.82 in the controls
and patients, respectively.
Reliability and mean ± SD of muscle echo intensity mea-

sures using max rectangular ROI with two different scans
(transverse and longitudinal) are presented in Table 4. The
longitudinal scan (0.80–0.89) had slightly higher ICC
values compared to the transverse scan (0.75–0.87).
Table 5 shows the reliability and mean ± SD of muscle

echo intensity measures by maximum ROI with to scans
(transverse and longitudinal). There was higher reliabil-
ity with lower SEM and MDC for muscle echo intensity
in the transverse scan relative to the longitudinal scan.

Discussion
In the current study, ultrasound imaging was used to evalu-
ate the intrarater within-day reliability of nerve and muscle
morphological features such as CSA, size, function, and

Table 2 Reliability of muscle contraction ratio in the controls
(dominant and nondominant sides) and patients with sciatica
(affected and unaffected sides)

Mean SD ICC SEM MDC

Dominant

Multifidus 1.24 0.19 0.82 0.08 0.22

Biceps Femoris 1.17 0.14 0.91 0.04 0.11

Medial Gastrocnemius 1.12 0.07 0.90 0.03 0.08

Soleus 1.10 0.06 0.87 0.03 0.07

Nondominant

Multifidus 1.25 0.17 0.84 0.06 0.18

Biceps Femoris 1.20 0.13 0.90 0.03 0.14

Medial Gastrocnemius 1.12 0.07 0.86 0.03 0.09

Soleus 1.10 0.07 0.88 0.03 0.09

Affected

Multifidus 0.87 0.40 0.85 0.05 0.16

Biceps Femoris 1.13 0.25 0.89 0.08 0.22

Medial Gastrocnemius 1.01 0.20 0.87 0.07 0.19

Soleus 0.90 0.07 0.90 0.06 0.17

Unaffected

Multifidus 1.20 0.14 0.89 0.04 0.13

Biceps Femoris 1.27 0.16 0.90 0.04 0.13

Medial Gastrocnemius 1.20 0.21 0.86 0.07 0.19

Soleus 1.25 0.22 0.89 0.06 0.18

SD Standard Deviation, ICC Intraclass correlation coefficient, SEM Standard
Error of Measurement, MDC Minimal Detectable Change

Table 3 Reliability of sciatic nerve cross-sectional area / echo intensity in the controls (dominant and nondominant sides) and
patients with sciatica (affected and unaffected sides)

Cross-Sectional Area (mm2) Echogenicity (a.u.)

Trace method Ellipse method

Mean SD ICC SEM MDC Mean SD ICC SEM MDC Mean SD ICC SEM MDC

Dominant 47.76 12.77 0.94 3.10 8.59 47.54 12.59 0.82 5.34 14.76 75.5 26.40 0.74 13.44 37.14

Nondominant 48.01 12.3 0.97 2.14 5.94 47.98 12.51 0.88 4.33 11.96 74.98 21.07 0.71 11.24 31.07

Affected 51.81 10.0 0.91 3.0 8.31 50.97 9.73 0.83 4.01 11.08 70.64 26.48 0.75 13.24 36.59

Unaffected 45.54 9.11 0.90 2.88 7.97 45.11 8.98 0.81 3.91 10.81 71.67 37.28 0.82 15.81 43.70

ICC Intraclass Correlation Coefficient, SEM Standard Error of Measurement, MDC Minimal Detectable Change, a.u. arbitrary units
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quality of these structures in patients with LBP with unilat-
eral radiculopathy (sciatica) and healthy controls. Accept-
able level of reliability is a prerequisite for using ultrasound
imaging as a valid measure of muscle activity to make deci-
sions, especially in a clinical setting. In general, the results
of this study suggest that there are good to high reliability
of ultrasound measurements of the nerve and muscle con-
traction in healthy controls as well as in the patients with
sciatica. These findings support previous studies reporting
acceptable reliability for nerve CSA and muscle thickness /
echo intensity by ultrasonography [7, 14, 25–27]. However,
there are some factors which can affect reliability; for ex-
ample, examiner’s US experience, participants and the test-
ing situation. Furthermore, several sources of error may
affect the ultrasound measurements, such as positioning of
the US probe, anatomical landmark detection and precision
of marking the fascial bands [28].

Reliability of contraction ratio
To the best of our knowledge, this is the first study to
evaluate test-retest reliability contraction ratio of the lower
back and lower limb muscles affected by sciatica. Measur-
ing muscle thickness using rehabilitative ultrasound im-
aging may be useful as an indicator of muscle function or

neuromuscular motor control in the assessment of sciatica
due to lumbar disc herniation. The contraction ratio had
high reliability and may be used to assess the alterations of
muscles morphology and function in patients with sciatica.
Multifidus activation by the abdominal hollowing and

contralateral arm rising maneuver has been studied in
individuals with and without LBP [29–32]. However,
these studies have not used the prone hip extension
maneuver to assess multifidus activation. Thus, this
method of activation can be employed to contract multi-
fidus in clinical or research settings.
The contraction ratio of measured muscles ranged from

0.87 to 1.27 with large variability. It may be due to the vari-
ability of motor control or muscle recruitment patterns in
the participants. For example, reduced multifidus muscle
contraction ratio on the affected side may result from pain
or reflex inhibition due to the nerve root compression. It is
also plausible that reduced soleus contraction ratio was a
result of individual differences in preferential motor activa-
tion and/or co-contraction muscle synergy or antagonist
into the muscle chain [33]. Reliability of architectural prop-
erties of the medial gastro-soleus had been widely studied
previously [34]; however, there is no report regarding the
reliability of the muscle contraction ratio of these muscles.

Table 4 Reliability of muscle echo-intensity measures for the maximum rectangular region of interest in the controls (dominant and
nondominant sides) and patients with sciatica (affected and unaffected sides)

Transverse scan (a.u.) Longitudinal scan (a.u.)

Mean SD ICC SEM MDC Mean SD ICC SEM MDC

Dominant

Multifidus 90.53 18.27 0.81 7.95 21.99 91.83 23.20 0.83 9.56 26.42

Biceps Femoris 67.89 21.26 0.76 10.40 28.74 59.08 16.86 0.80 7.54 20.84

Medial Gastrocnemius 79.98 14 0.78 6.57 18.67 84.82 20 0.82 8.48 23.39

Soleus 104.39 47.16 0.79 21.60 59.70 100.74 45.58 0.81 19.83 54.80

Nondominant

Multifidus 98.13 20.1 0.75 10.05 27.79 89.75 17.31 0.80 7.74 21.39

Biceps Femoris 81.90 23.23 0.77 11.13 30.75 78.74 21.48 0.82 9.11 25.17

Medial Gastrocnemius 79.89 18.67 0.76 9.13 25.23 80.85 14.24 0.83 5.87 16.23

Soleus 104.03 46.29 0.78 16.85 46.57 100.46 48.82 0.82 20.70 57.21

Affected

Multifidus 99.41 41.53 0.82 17.61 48.69 98.89 41.1 0.84 16.44 45.43

Biceps Femoris 73.71 37.82 0.85 14.64 40.45 80.21 42.72 0.80 19.10 52.79

Medial Gastrocnemius 89.87 45.89 0.83 18.98 52.47 90.55 47.92 0.84 19.17 52.98

Soleus 99.76 31.22 0.87 11.24 31.08 96.63 32.23 0.89 10.67 29.5

Unaffected

Multifidus 98.74 42.28 0.82 17.93 49.57 99.76 43.87 0.84 17.55 48.50

Biceps Femoris 72.11 39.23 0.80 17.54 48.49 74.10 38.03 0.83 15.67 43.32

Medial Gastrocnemius 80.21 47.97 0.87 17.27 47.72 79.27 48.79 0.86 18.25 50.46

Soleus 95.89 31.52 0.85 12.2 33.51 97.45 35.02 0.84 14.01 38.72

ICC Intraclass correlation coefficient, SEM Standard Error of Measurement, MDC Minimal Detectable Change, arbitrary units (a.u)
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Ruas et al. (2017) also reported utilizing ultrasound
imaging as a highly reliable method for the measuring
of hamstrings muscle thickness [26]. Individuals may
develop a protective motor strategy and adaptation
(e.g., co-contraction of agonist-antagonist muscles, or
increased activity of synergistic muscles) to pain
provocation movement [35]. Due to the high reliabil-
ity of the muscle contraction ratio, it can be consid-
ered as a potential outcome measure when assessing
neuromotor function in clinical practice and in re-
search. All the SEMs and the corresponding MDCs
were low; thus making the contraction ratio a promis-
ing measure for future studies.

Reliability of sciatic nerve morphological characteristics
The reliability aspect of measuring CSA and echo inten-
sity of the sciatic nerve with ultrasound in patients with
LBP with unilateral radiculopathy (sciatica) has received
little attention in the literature. This study showed that
the sciatic nerve CSA had good to high test-retest reliabil-
ity, while echo intensity had moderate reliability. The sci-
atic nerve was not always ellipsoid, therefore the tracing
method was a slightly more reliable method than the el-
lipse method, which is comparable to the previous finding

on the measurement of tibial nerve CSA [25]. Therefore,
we suggest the direct method to determine the CSA of the
sciatic nerve in this population. To our knowledge, little is
known about the magnitude of SEM or MDC of the sci-
atic nerve in these patients. The SEM and MDC of CSA
by tracing method were lower than ellipsoid in the con-
trols. A similar trend was observed in the patient group.
In line with our findings, two previous studies had re-
ported acceptable reliability when measuring the sciatic
nerve CSA [14, 27]. We found moderate reliability for the
nerve echo intensity. However, no study has investigated
the reliability of the echo intensity of the sciatic nerve in
this population. Variability in the MDC measurements of
sciatic nerve echo intensity may be due to the echogenic
properties of surrounding tissues [13].

Muscle echo intensity
Muscle echo intensity values might offer important
insight into the muscle changes caused by disease /
pathological disorders [36], especially because it is more
objective and possibly more reliable than a simple visual
assessment of ultrasound images [37]. We observed
moderate reliability of echo intensity using max rect-
angular ROI in the transverse scan. This finding is in

Table 5 Reliability of muscle echo-intensity measures for the maximum region of interest in the controls (dominant and
nondominant sides) and patients with low back pain (affected and unaffected sides)

Transverse scan (a.u.) Longitudinal scan (a.u.)

Mean SD ICC SEM MDC Mean SD ICC SEM MDC

Dominant

Multifidus 64.51 15.1 0.91 4.53 12.51 66.56 23.17 0.80 10.36 28.64

Biceps Femoris 69.28 26.81 0.93 7.08 19.58 59.07 18.56 0.82 7.86 21.73

Medial Gastrocnemius 83.20 19.90 0.96 3.98 10.99 84.45 20.31 0.90 6.42 17.75

Soleus 95.51 46.18 0.94 11.27 31.14 102.50 54.98 0.85 21.28 58.33

Nondominant

Multifidus 45.29 29.37 0.92 8.29 22.91 66.50 18.37 0.89 6.07 16.80

Biceps Femoris 81.98 20.81 0.94 5.08 14.05 86.32 30.77 0.87 11.08 30.64

Medial Gastrocnemius 79.09 22.43 0.91 6.73 18.57 80.24 16.98 0.92 4.79 13.26

Soleus 106.52 50.06 0.90 15.82 43.72 89.72 49.78 0.88 17.22 47.60

Affected

Multifidus 108.19 42.37 0.94 10.34 28.58 99.08 36.48 0.82 15.47 42.77

Biceps Femoris 73.32 39.14 0.92 11.04 30.52 78.82 40.37 0.84 16.15 44.63

Medial Gastrocnemius 90.12 45.94 0.93 12.13 33.52 91.36 50.18 0.86 18.77 51.89

Soleus 98.65 30.66 0.91 9.20 25.44 99.18 35.79 0.90 11.31 31.27

Unaffected

Multifidus 101.90 35.88 0.92 10.12 27.98 106.13 44.59 0.81 19.40 53.61

Biceps Femoris 81.12 38.33 0.92 10.81 29.89 83.48 35.77 0.83 14.74 40.75

Medial Gastrocnemius 81.11 48.82 0.90 15.43 42.66 80.96 49.13 0.87 17.69 48.90

Soleus 99.11 30.26 0.91 9.08 25.10 100.12 33.89 0.89 11.22 31.0

ICC Intraclass correlation coefficient, SEM Standard Error of Measurement, MDC Minimal Detectable Change, a.u. arbitrary units
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line with Varanoske et al. (2017), who stated echo inten-
sity may be heterogeneous when examining a portion of
individual muscles in the transverse plane [38].
One of our aims was to determine the effect of ROI size

on the reliability of ultrasound muscle echo intensity mea-
sures. Caresio et al. (2015) reported ICCs of 0.54–0.86 for
within-session tibialis anterior and gastrocnemius muscle
echo intensity depending on ROI size, with larger ROIs
being associated with higher reliability [7]. In our study,
using max rectangular ROI displayed lower SEM values
for the longitudinal scan but larger SEM values for the
transverse scan. Our results also showed that echo inten-
sity reliability was generally lower than the contraction ra-
tio nearly in all the assessed muscles. Lower echo intensity
reliability can be due to variability in the US probe place-
ment and potential image-to-image differences in back-
ground brightness, which may in return affect the
ultrasound absorption and reflection of echo signals [39].

Limitations
One of the limitations of this study was calculating only
intrarater within-day reliability. However, we decided to
measure within-day reliability because changes in the
hydration level, posture and muscle relaxation between
the sessions may affect between-day reliability. Second,
this study was performed in the middle-aged population
with 1–3 activity level, which limits generalizability to
other age groups with higher activity level (e.g., athletes).
Another potential limitation was having only one rater,
so consistency across multiple raters is unknown.

Conclusions
This study suggests moderate to high intrarater
within-day reliability in muscle contraction ratio and
muscle and sciatic nerve CSA and echogenicity in patients
with LBP with unilateral radiculopathy and healthy con-
trols. The reliability of echo intensity measurements is
sensitive to ROI size; i.e., the maximum ROI in the trans-
verse scan had the highest reliability. These findings can
contribute to support the use of ultrasound for reliable
evaluation of neuromuscular morphology and particularly
to assess the small changes in both nerve and muscle
structures in LBP with unilateral radiculopathy.
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