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Abstract

Background: Intramuscular adipose tissue (IMAT) is a feature of degenerative muscle composition and is a common
feature in populations with chronic low back pain (CLBP). Avoidance behavior is a possible cause of morphological
muscle composition due to disuse of the paraspinal muscles. Therefore it is of clinical interest to determine the
association between fear-avoidance beliefs and IMAT of the paraspinal muscles in populations with CLBP.

Methods: In this cross-sectional study, we examined twenty-four adults, featuring a mean age of 48.63 years (SD ± 14.
73), with CLBP. Axial T2-weighted Magnetic Resonance Imaging (MRI) images were selected on the same level as the
intervertebral disc of segments L4-L5 and L5-S1. After determine the region of interest, the amount of IMAT was
measured by an automatic-threshold method to distinguish fat from muscle tissue. Fear-avoidance beliefs were
measured with the Fear-Avoidance Beliefs Questionnaire, with regard to Physical Activity (FABQ-PA). Bivariate
correlation and multiple regression analysis were used to determine the association between IMAT of the paraspinal
muscles and fear-avoidance beliefs.

Results: There is a significant bivariate association between the FABQ-PA and ES IMAT (r = 0.484, P = 0.017), but not for
LMM (r = 0.228, P = 0.284). The association between the FABQ-PA and ES IMAT remained moderate after adjusting for
covariates (β = 0.381, P = 0.028).

Conclusion: Fear-avoidance beliefs are moderately associated with ES IMAT and poorly associated with LMM IMAT in a
population with CLBP. Results should be interpreted with caution due to a small and selected study population.
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Background
Low back pain (LBP) is a common musculoskeletal
condition that affects up to 85% of the general population
during their lives [1], with a high recurrence risk of 44 to
78% [2]. Chronic low back pain (CLBP) is considered to
be a multifactorial condition due to a constant interaction
between physical (levels of conditioning and loading expo-
sures), psychological (stress, cognition and emotion) and
social systems (culture, work, home and environment) [3].

One of the anatomical biomarkers, as part of the phys-
ical system in people with CLBP is the presence of a de-
generative muscle composition in the paraspinal muscles
[4–8]. Degenerative muscle composition is characterized
by a decrease in the cross-sectional area (CSA) of the
muscle [4, 5], and an increase of fatty infiltration, also
known as “intramuscular adipose tissue” (IMAT) [6–8].
The burden of proof for the CSA as a surrogate for degen-
erative muscle composition is inconclusive and contradict-
ory. In some studies, a decrease in the CSA of the
paraspinal muscles is associated with LBP [9, 10], but
other studies disagree [11–13]. Shahidi et al. [14] show
that paraspinal muscle tissue changes are more complex
than atrophy alone. IMAT appears to be a better
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representation of degenerative muscle composition and is
a feature of decreased muscle structure and quality. In
addition to IMAT, a slow-to-fast muscle fiber transform-
ation [11], high levels of inflammation and decreased vas-
cularity [14] are also described as features of structural
remodeling of degenerative muscle tissue.
Several studies have shown an association between

IMAT of the paraspinal muscles and CLBP [6]. For ex-
ample, more IMAT was found in the lumbar multifidus
(LMM) of patients with CLBP (23.6%), compared to
people without complaints (14.5%) [15]. In addition,
significantly more IMAT was found in the paraspinal mus-
cles of patients with CLBP compared to acute LBP [16].
One of the possible explanations for the accumulation

of IMAT in people with CLBP is altered
individual-specific motor behaviors of paraspinal muscles
[17]. It is known that IMAT is associated with decreased
muscular metabolic activity [18, 19], which can lead to a
reduction of intramuscular mitochondrial oxygenation of
glucose, thus increasing insulin resistance and intramus-
cular triacylglycerol levels [20]. Intramuscular triacylglyc-
erol levels can lead to alternative communication (adipose
muscle crosstalk) between satellite cells and macrophages,
where myogenic adult stem cells differentiate to fat cells
instead of myocells [21], with negative consequences for
the development of new sarcomeres [22, 23], thus leading
to a degenerative muscle composition.
Avoidance behavior is a highly associated with

pain-related factors contributing to muscle inhibition
[24], and altered individual-specific motor behaviors of
paraspinal muscles [17], because people with negative
cognitions about pain can be afraid to move when a pain
experience is considered to be dangerous [25, 26]. These
pain-related factors are highly associated with a poor
treatment outcome in patients with CLBP [27].
From this clinical perspective, an association between

avoidance behavior and IMAT is of clinical interest be-
cause it could bear consequences for the choice of treat-
ment and exercise intensity in people with CLBP. For
example, low-intensity exercises like motor control re-
habilitation presumably have a low impact on paraspinal
metabolic activity and muscle quality [28, 29], when
pain-related avoidance beliefs are present. It has how-
ever not yet been investigated whether avoidance behav-
ior is associated with IMAT in a population with CLBP.
Hence the research question is: What is the association
between fear-avoidance beliefs and IMAT of the para-
spinal muscles in patients with CLBP?

Methods
This cross-sectional study was conducted in an independ-
ent and specialized centre for Magnetic Resonance Im-
aging (MRI) diagnostics. MRI images were generated from
participants who were referred for medical diagnostic

research due to their CLBP and were blinded to
MRI-findings when completing the questionnaires. The
participants did not perform any additional actions for this
study and consented to the use of anonymized personal
information through informed consent. The Institutional
Review Board (department of health studies) of HU Uni-
versity of Applied Sciences Utrecht approved the study
protocol, reference number: 35_010_2016.

Participants
Patients met the inclusion criteria if they were 18 years
or older and had experienced (chronic) LBP lasting lon-
ger than 12 weeks. If there was a history of lumbar sur-
gery, neurological disorders, spinal deformities, and
recent traumatic incidents, patients were excluded from
participation. MRI images with fat suppression were
considered unsuitable and are excluded from this study.

Procedure imaging
Low-field Tesla 1.5 MRI images (GE Medical Systems,
USA, Siemens Healthcare, Erlangen, Germany) are used
with a repetition time of 4110–4400 milliseconds (ms)
and an echo time of 132ms. The slice thickness was 3mm
(mm) and the field of view 200 × 168.6mm. The patients
were placed supine with their hips and knees slightly bent
(30 degrees) to maintain a neutral position of the lumbar
vertebral column. The transverse recordings were selected
at the intervertebral disc of L4-L5 and L5-S1 using
T2-weighted sagittal images of the lumbar spine.

IMAT
MRI data was analyzed using ImageJ 1.50i (Java-based
version, public domain NIH Image Software; Research
Services Branch). The T2-weighted transversal images
were converted to an 8-bit gray scale. The CSA of the
Erector Spinae (ES) and the LMM were bilaterally out-
lined at each level and were defined as the TROI. Ana-
tomical cross-references of the LMM and ES muscles
are used as proposed by Crawford et al. [30] (Fig. 1).
Fatty substances between the aponeurosis of the ES and
the posterior layer of the fascia thoracolumbalis, the
‘fatty tent’ between the dorsal aponeurosis of the iliocos-
talis and longissimus, and intrafascial triangles were not
included and are considered as extramuscular fat [30].
After cropping the region of interest, the amount of
IMAT was measured by an automatic-threshold method
to distinguish fat from muscle tissue using a histogram
(Fig. 2) [31]. The extent of IMAT was calculated by div-
iding the Functional Region of Interest (FROI) relative
to the Total Region of Interest (TROI) by the following
formula: %IMAT = FROI / TROI × 100%. This method-
ology is widely accepted, and features high intra-rating
reliability (ICC > 0.75) [32], and concurrent validity with
phantom images [33].
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Pain-related fear-avoidance beliefs
Levels of fear-avoidance beliefs were determined by the
Fear-Avoidance Beliefs Questionnaire (FABQ). The FABQ
consisted of 16 questions where the answers varied be-
tween 0 (disagree) to 6 (fully agree). Only the subdomain
Physical Activity (FABQ-PA), the total sum ranging from

0 to 24 points, has been used in this study. The total score
is the sum of items 2 to 5, with a higher score representing
a greater degree of pain-related fear-avoidance beliefs [34].
A score of 14 points or higher indicates the presence of
pain-related fear-avoidance beliefs. The FABQ-PA has a
good inter-rater reliability of ICC = 0.90 [34], and an
adequate concurrent validity with the Tampa Scale for
Kinesiophobia, r = 0.62 in people with CLBP [34].

Potential confounders
A strong association has been found between IMAT and
disc degeneration [35–37], age [38–40], extent of physical
activity [36], degree of pain [7], and gender [41] and have
been included in this research as potential confounders.

Self-reported questionnaires
Pain intensity was measured using a numeric pain-rating
scale (NPRS). The participants assessed their average pain
for the week preceding the MRI on a scale of 0 (no pain) to
10 (most severe pain). The NPRS has been proven as a valid
and reliable measurement tool for measuring pain intensity
[42]. Physical activity was measured by asking the partici-
pants how many hours a week they participated in sporting
activities on average, for the four weeks prior to the MRI.

Disc degeneration
Intervertebral degenerative changes of the disc were de-
termined by T2-weighted sagittal images of the lumbar
spine, as they provide a comprehensive impression of
the disc structure [43]. The modified Pfirrmann classifi-
cation of Griffith et al. [44] was used to determine the

Fig. 1 Anatomical cross-references used in this study. Abbreviations:
IVD intervertebral disc, FT fatty tent, ES erector spinae, ST
spinotransversal muscles (lumbar multifidus), QL quadratus
lumborum, PM psoas major, SPC spinal canal, ZJ zygapophyseal joint,
TLF fascia thoracolumbalis, IFT intrafascial triangle, ESA, aponeurosis
of the ES. Orange polygonal circumference measurement = total
region of interest lumbar multifidus; purple polygonal circumference
measurement = total region of interest erector spinae, blue
polygonal circumference measurement = quadratus lumborum,
green polygonal circumference measurement = psoas major

Fig. 2 Sagittal T2-weighted images (2a), with a selection of transverse to L4-L5 intervertebral disc, (2b), with a polygonal circumference
measurement of the lumbar multifidus (2c), cropping image (2d) and automatic segmentation (2e)

Wesselink et al. Chiropractic & Manual Therapies           (2019) 27:14 Page 3 of 8



degree of disc degeneration, ranging from 1 (no degener-
ation) to 8 (final stage of degeneration). This research
method has been proven as reliable [44].

Statistical analysis
A statistical analysis was performed using IBM SPSS Sta-
tistics 20.0. Descriptive statistics were tested together
with the Shapiro-Wilk test to determine the distribution
of data. The average difference in IMAT between the
LMM and the ES was tested by the paired samples
t-test. A bivariate correlation matrix was used to assess
the independent relationship between IMAT and
FABQ-PA, as well as the potential covariates. A Pearson
correlation coefficient (r) was used when the bivariate
association met the assumption of the parametric test
[45]. A non-parametric test (Spearman’s Rho) was used
when the bivariate association did not meet the assump-
tions of the parametric test. The bivariate association be-
tween gender and IMAT was tested by a point biserial
coefficient (rpb).
A multiple regression analysis was used to determine if

IMAT associated with FABQ-PA after correcting for the
variance due to the covariates. At first, IMAT and
FABQ-PA were entered in the regression model. Next, co-
variates with a significant relationship (P < 0.10) with
IMAT were all entered simultaneously in the second step
by a enter method. The standardized coefficients (βeta)
were calculated for the association between IMAT (LMM
and ES separately) and the FABQ-PA after they were cor-
rected for covariates and are considered significant at P <
0.05. An analysis of variance (ANOVA) was used to deter-
mine whether the regression model explained a significant
proportion of the statistical variance.

Results
Demographic characteristics
Demographic characteristics of the sample are shown in
Table 1. All descriptive statistics showed a normal distri-
bution of data (Shapiro-Wilk P > 0.05). Twenty-four pa-
tients met the inclusion criteria, with a mean age of 48.63
years (SD ± 14.73). The average score on the FABQ-PA
was 14.92 (SD ± 5.39), of which 70.8% scored higher than
14 points. LMM IMAT (22.03%, SD ± 11.88) was signifi-
cantly higher (P = 0.046) than ES IMAT (17.72%, SD ±
11.66), with an average difference of 4.28%.

Bivariate correlation analysis
Table 2 shows the bivariate correlation matrix. Data met
the full assumption for parametric testing. There was a
significant association between FABQ-PA and ES IMAT
(r = 0.484, P = 0.017), but not the LMM (r = 0.228, p =
0.284). LMM IMAT was found to be significantly associ-
ated with the age (r = 0.678, p < 0.001), the extent of disc
degeneration on L4-L5 (r = 0.515, P = 0.010) and L5-S1

(r = 0.477, P = 0.018). LMM IMAT was not significantly
associated with, gender, physical activity and pain inten-
sity (P > 0.1). ES IMAT also showed a significant rela-
tionship with age (r = 0.472, p = 0.020), disc degeneration
of L4-L5 (r = 0.480, p = 0.018) and approximate statistical
significance for disc degeneration on L5-S1 (r = 0.336, p
= 0.109) and physical activity (r = − 0.350, p = 0.094). No
significant association has been found for ES IMAT with
gender and pain intensity (P > 0.1).

Table 1 Demographic and clinical characteristics of participants

Variable Value

Age (SD) 48.63 (14.73)

Females (%) 13 (52)

Physical Activity (weekly)

0–2 h (%) 8 (32%)

2–5 h (%) 6 (24%)

5–10 h (%) 7 (28%)

> 10 h (%) 3 (12%)

NPRS (SD) 5.58 (1.91)

FABQ-PA (SD) 14.92 (5.39)

LMM IMAT (SD) 22.03% (11.88)

ES IMAT (SD) 17.72% (11.66)

Abbreviations: FABQ-PA Fear-Avoidance Beliefs Questionnaire subdomain
Physical Activity, LMM Lumbar Multifidus, ES Erector Spinae, IMAT
Intramuscular Adipose Tissue, NPRS Numeric Pain Rating Scale, SD
standard deviation
NOTE. Values are presented as mean ± SD or %. N = 24

Table 2 Bivariate correlations between the lumbar IMAT
infiltration and gender, age, physical activity, NPRS mean, disc
degeneration and fear-avoidance beliefs

LMM IMAT ES IMAT

Gender rpb −0.103 0.088

p 0.630 0.683

Age r 0.678 0.472

p < 0.001 0.020

Physical activity r −0.205 −0.350

p 0.337 0.094

NPRS mean r 0.075 −0.188

p 0.728 0.379

Disc degeneration L4-L5 r 0.515 0.480

p 0.010 0.018

Disc degeneration L5-S1 r 0.477 0.336

p 0.018 0.109

FABQ-PA r 0.228 0.484

p 0.284 0.017

Abbreviations: NPRS Numeric Pain Rating Scale, FABQ-PA Fear-Avoidance
Beliefs Questionnaire subdomain Physical Activity, IMAT intramuscular adipose
tissue, LMM Lumbar Multifidus, ES Erector Spinae
rpb = Point biserial coefficient
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Multiple regression analysis
Tables 3 and 4 shows the multiple regression analysis.
The significant explained variance of ES IMAT, physical
activity, age and disc degeneration of L4-L5 (model 2)
was 55.5% (ANOVA P = 0.003). After adjusting for con-
founders, the association between the FABQ-PA and ES
IMAT was moderate (β 0.381, P = 0.028). The significant
explained variance of LMM IMAT, disc degeneration
and age (model 2) was 54.5% (ANOVA P = 0.003). The
association between the FABQ-PA and LMM IMAT was
poor (β 0.168, P = 0.307) after adjusting for confounders.

Discussion
This study has shown a moderate relationship between
pain-related fear-avoidance beliefs and ES IMAT. Avoid-
ance behavior can be seen as a common-sense response to
dealing with LBP when people have negative thoughts
about their pain [24, 46], which are associated with altered
motor patterns of paraspinal muscles [17, 47] and reduced
physical activity [48]. One added value of our results could
be its utility as additional evidence showing why avoidance
behavior is not a recommended approach in CLBP.
A small association has been found between

fear-avoidance beliefs and LMM IMAT, in contrast with
ES IMAT. This difference may be due to different substi-
tution patterns of the LMM as compared to other spinal
muscles, which are caused by a long-loop inhibition
through the medial ramus of the dorsal radix and are
probably more related to pain-induced vertebral path-
ology [49]. Shahidi et al. [39] noted that the lumbar mul-
tifidus degenerates in people with chronic degenerative
lumbar spine pathology. This corresponds with our find-
ings, where LMM IMAT is highly associated with age (r
= 0.678, P < 0.001) and disc degeneration (L4-L5 r =
0.515, P = 0.010 and L5-S1 r = 0.477, P = 0.018). In
addition, rapid atrophy of the LMM has been noted
within 3 days after intervertebral lesions in a porcine
model [50], or pain onset in humans [9]. After pain on-
set, pain-induced reflex inhibitory mechanisms and dis-
turbance in coordination are also noted in the LMM
[51]. Nevertheless, we know that muscle tissue changes

are more complex than atrophy alone in people with
CLBP [13], and therefore a clear explanation for the
underlying mechanisms of different outcomes in ES
IMAT and LMM IMAT remains hypothetical.
Degenerative muscle composition with a high fat con-

tent increases with age, appears to progress faster in the
LMM (0.24% per year) than the ES (0.13% per year) and
corresponds to findings from this study [38]. The stan-
dardized coefficient (βeta) in the final model of the mul-
tiple regression analysis was higher for LMM IMAT (β
= 0.533) and less so for ES IMAT (β = 0.447).
People with CLBP demonstrate altered

individual-specific motor (control) behaviors [17, 47] and
show discrete loss of cortical organization of inputs to
paraspinal muscles which could lead to differential central
activation [52, 53]. In this case, motor rehabilitation is
suggested as a possible effective treatment to restore opti-
mal control in LBP [54]. To restore full motor control of
the lower back, it is doubtful whether low-intensity exer-
cises like motor control rehabilitation alone is effective to
improve paraspinal muscle function when high levels of
intramuscular fat are present. We think that ES IMAT
could be an adverse secondary consequence of avoidance
behavior due to altered individual specific motor patterns
[17, 55], with reduced muscular metabolic activity [18,
19]. From this perspective, cognition-targeted motor con-
trol training combined with pain neuroscience education
could be a more appropriate intervention to improve
muscle function, also because it has been proven more ef-
fective than current best-evidence physiotherapy for im-
proving physical function and pain cognitions in people
with CLBP [56]. However, in our study it cannot be deter-
mined whether the association of fatty infiltration of the
paraspinal muscles and pain-related fear-avoidance beliefs
is the cause or effect of one another. To demonstrate a
causal relationship between pain-related fear-avoidance
beliefs and IMAT of the paraspinal muscles, studies with a
longitudinal design are recommended.
This study shows that the average LMM IMAT was

22.03%, and ES IMAT 17.72%. Other studies took di-
verse IMAT levels for both the LMM and ES [6, 57].

Table 3 Multiple regression analysis IMAT ES L4-L5 & L5-S1

Variable Unstandardized coefficients Standardized coefficients P-
valueB 95% CI βeta

Lower Upper

M1 (Constant)
FABQ-PA

3.526
0.952

−8.655
0.191

15.707
1.713

0.484 0.554
0.017

M2 (Constant)
FABQ-PA
DD L4
Age
PA

−9.985
0.750
0.679
0.354
−3.355

−26.748
0.092
−1.817
0.040
−7.126

6.778
1.409
3.175
0.668
0.416

0.381
0.110
0.447
−0.305

0.228
0.028
0.576
0.029
0.078

Abbreviations; M Model, IMAT Intramuscular Adipose Tissue, PA Physical Activity, DD Disc Degeneration, FABQ-PA Fear-avoidance beliefs questionnaire subdomain
physical activity, ES Erector Spinae
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Besides population-based differences like age or levels of
disability, such controversial results could be explained
by differences in methodology (quantitative versus quali-
tative measurement methods, MRI versus computed
tomography scan) [30, 31]. Despite discrepancies in
methodology, histological studies demonstrated that
IMAT observed by MRI strongly corresponds to histologic
evidence of paraspinal morphology and is therefore con-
sidered a valid method for quantifying the degree of fatty
infiltration [31]. Some studies have proven reliable at dis-
tinguishing fat from muscle tissue in conventional
T1-weighted MRI images based on pixel intensity and his-
tographic methodology [58, 59]. In order to compare dif-
ferent studies in future investigations, it is recommended
to standardize threshold and segmentation procedures.

Study limitations
A limitation in this study is the use of T2-weighted spin
echoes, which can be more difficult to correct due to
other changes that may occur in and around the muscle
[59]. Maillard et al. [60] describes a rapid extension of the
T2 relaxation time of (muscle) inflammation to as much
as 100ms/s, which closely matches the T2 relaxation time
of fat (130–150ms/s) and may affect the validity of the
measurement. This difference is larger in T1-weighted
spin echoes and is therefore recommended for subsequent
research to quantify the degree of fatty infiltration in con-
ventional MRI images. However, the concurrent validity
and reliability are shown to be excellent in T2-weighted
images [32]. Either way, MRI-based methods as DIXON/
IDEAL [61] seems to be most accurate to distinguish fat
from muscle tissue than normal T1- or T2-weighted spin
echoes and are therefore widely recommended for subse-
quent testing [62, 63]. Since imaging research in this
population was used for usual care, and not for the benefit
of this study, it was not possible to apply these methods.
In this study, the average age was 48.63 years (SD ±

15.29) and 70.08% of the included participants were classi-
fied with pain-related fear-avoidance beliefs (FABQ-PA >
14). These factors may have led to selection bias, and for
this reason it may be difficult to generalize our results to

an elderly population or population with chronic lower
back pain without pain-related fear-avoidance beliefs. Lar-
ger epidemiological studies of the general population can
provide valuable research data. In this study, the multiple
regression analysis contained one outcome variable and
three covariates with 24 included participants. This model
did not fully meet the recommended limit of a multiple
regression analysis of at least ten observations per vari-
able, which may have lowered the validity of the analysis
[64]. An investigation using a larger population is recom-
mended in the future.

Conclusions
This study has shown a moderate association between
pain-related fear-avoidance beliefs and IMAT in ES, but
a poor association with LMM IMAT. The small and se-
lected study sample may have lowered the validity of our
results, and conclusions have to be interpreted with cau-
tion. More longitudinal research with a larger population
is required to demonstrate a causal relationship.
MRI-based methods like DIXON/IDEAL are recom-
mended for further research.
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