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Abstract

Background: There is a shortage of agreement studies relevant for measuring changes over time in lumbar
intervertebral disc structures. The objectives of this study were: 1) to develop a method for measurement of
intervertebral disc height, anterior and posterior disc material and dural sac diameter using MRI, 2) to evaluate intra- and
inter-rater agreement and reliability for the measurements included, and 3) to identify factors compromising agreement.

Methods: Measurements were performed on MRIs from 16 people with and 16 without lumbar disc herniation,
purposefully chosen to represent all possible disc contours among participants in a general population study cohort.
Using the new method, MRIs were measured twice by one rater and once by a second rater. Agreement on the sagittal
start- and end-slice was evaluated using weighted Kappa. Length and volume measurements were conducted on
available slices between intervertebral foramens, and cross-sectional areas (CSA) were calculated from length
measurements and slice thickness. Results were reported as Bland and Altman’s limits of agreement (LOA) and intraclass
correlation coefficients (ICC).

Results: Weighted Kappa (K, (95% Cl)) for start- and end-slice were: intra-: 0.82(0.60,0.97) & 0.71(0.43;,0.93); inter-rater: 0.56
(0.29,0.78) & 0.60(0.35;0.81). For length measurements, LOA ranged from [—1.0;1.0] mm to [-2.0;2.3] mm for intra-; and
from [=1.1; 1.4] mm to [-2.6;2.0] mm for inter-rater. For volume measurements, LOA ranged from [—293;199] mm? to
[—582;382] mm? for intra-, and from [=17:801] mm? to [=450:713] mm? for inter-rater. For CSAs, LOA ranged between
[-213: 18.8] mm? and [=31.2; 43.7] mm? for intra-, and between [~10.8; 16.4] mm? and [-64.6; 27.1] mm? for inter-rater.
In general, LOA as a proportion of mean values gradually decreased with increasing size of the measured structures.
Agreement was compromised by difficulties in identifying the vertebral corners, the anterior and posterior boundaries of
the intervertebral disc and the dural sac posterior boundary. With two exceptions, ICCs were above 0.81.

Conclusions: Length measurements and calculated CSAs of disc morphology and dural sac diameter from MRIs showed
acceptable intra- and inter-rater agreement and reliability. However, caution should be taken when measuring very small
structures and defining anatomical landmarks.
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Background

In 1934, Mixter and Barr introduced the concept of lum-
bar disc herniations (LDH) as an explanation for radiating
pain to the lower extremities [1,2]. Since then, extensive
effort has been put into investigating the pathogenesis,
clinical presentation, treatment and morphological
changes involved in LDH [2]. LDH is generally regarded
as a potential source of low back pain (LBP) and/or pain
radiating to the leg, often below the knee [3]. In patients
with clinical signs of nerve root compromise, about nine
out of ten patients have disc-related findings on magnetic
resonance imaging (MRI) [4]. On the other hand, LDH
may be present without any pain or other clinical symp-
toms [5].

Dural sac size and intervertebral disc height have pre-
viously been found to be related to LDH, either clinically
or biologically. The dural sac has a direct anatomical re-
lationship with the intervertebral disc [6], and a direct
mechanical influence is therefore possible due to an
LDH taking up space in the spinal canal [7]. In addition,
a correlation between a narrowed spinal canal and LBP
and/or leg pain has been reported in cross-sectional
studies [8-10]. Intervertebral disc height is possibly af-
fected by LDH as material migrates posteriorly from the
disc herniation. A study has shown a correlation be-
tween the classification of extended disc contour and
disc height [11]. As there is evidence that disc height re-
duction is associated with LDHs and thus of potential
clinical relevance, it was included in the current study.

Anterior disc material is similarly relevant, since it has
been proposed that anterior LDHs may cause pain and
symptoms [12,13]. Though this condition is rare, this
imaging finding was also included in the current study,
in order to be comprehensive.

Good long-term prognosis over a follow-up period of 6
months has been reported for a majority of people with
LDH [14-17], and forms the current understanding of
LDH among health care professionals [18,19]. In the con-
text of clinical prognosis, it is relevant to know how LDHs
change in size over time. Previous studies evaluating the
change in size of LDHs over time have focused mainly on
symptoms in clinical study populations [16,20-24]. Some
studies have investigated the quantitative change in size of
LDHs over time based on diagnostic imaging [25-29].
Three of these studies have reported the quantitative
change in size over time of disc material relative to the
spinal canal at multiple follow-ups [27-29], where measure-
ments were based on a method developed by Kato et al.
[27]. However, this method is described in insufficient de-
tail to be replicated, due to the absence of definitions of
anatomical boundaries.

For evaluation of disc changes over time, the ideal
method is to use measurements from multiple image
slices. The value of a multi-slice approach is that multiple
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length and area measurements can be combined into
cross-sectional areas (CSA) or volumes, respectively,
thereby increasing the chance of capturing changes that
might otherwise be missed from single-slice methods. This
multi-slice approach has been used in several studies
[30-34]. It is also desirable that the method be described
in sufficient detail to allow replication. Studies have pro-
vided method descriptions in varying detail [30,35-38] and
in some cases, this detail is inadequate for replication.

Bland and Altman’s Limits of Agreement (LOA) is the
most popular [39], and recommended statistical method
for evaluation of agreement [40-44]. The standard error of
measurement (SEM) is similarly regarded as a suitable
parameter of agreement [45], but is, however, sensitive to
variability in the population [46]. Although a recent study
reported use of LOA for evaluating agreement of measure-
ments on intervertebral disc morphology [47], it is rarely
used when evaluating agreement in the measurement of
intervertebral discs, LDH, or the spinal canal [48].

No method for quantitatively measuring intervertebral
discs, LDH, and the dural sac was found in the literature
that described in adequate detail a multi-slice technique
and used LOA (Additional file 1). For a series of planned
studies, we required a method to evaluate the changes in
size over time of LDHs and their influence over time on
dural sac size and intervertebral disc height, and their
relationship with LBP. Therefore, we had need of a
multi-slice technique for evaluating size of structures
that was described in adequate detail and that used LOA
to evaluate agreement.

The objectives of this study were:

1) to develop methods for quantitative measurement of
anterior and posterior disc heights, extension of
anterior and posterior lumbar disc material and
dural sac diameter on MRI,

2) to evaluate the intra- and inter-rater agreement and
reliability of the measurements included in these
methods, and

3) to identify sources of measurement error in the
measurement procedures.

Materials and methods

Design

The study is an intra- and inter-rater reliability study
using repeated measurements of individual MRIs.

Study population

The sample of MRIs was selected from the longitudinal
cohort-study entitled ‘Backs on Funen, Denmark; which
investigated potential risk factors for LBP. The Office of
Civil Registrations sampled a cohort of 40-year old
Danes in 2000. All subjects were from the general popu-
lation living in the county of Funen, Denmark. One out
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of nine people in this age group was selected (625 indi-
viduals) and invited to participate by postal mail. People
were excluded if they were severely disabled, had ferro-
magnetic implants, suffered from claustrophobia, or were
not able to communicate in Danish [49]. From this cohort,
412 participated in 2001 at baseline and were re-invited to
take part in 2005. At the second measurement of the co-
hort in 2005, 348 participated and were re-invited to take
part in 2009. At the last measurement in 2009, 293 partici-
pated. At every measurement of the cohort, all partici-
pants had a lumbar MRI and filled in a questionnaire
about their LBP. Permission for the original cohort study
was granted by the local ethics committee (ref. no.
20000042) and the Danish Data Protection Agency (ref.
no. 2000-53-0037) [49].

Sixteen participants assessed as having a disc hernia-
tion were purposefully selected by one of the co-authors
not involved in the actual measurements (PK) to repre-
sent cases with all available types of disc herniations
based on previous readings of the MRIs (see below). In
the upper lumbar spine, LDH was found to be almost
non-existent; therefore, we chose only the three lowest
levels. A list of identification numbers, levels, types of
herniation, and time of examination was generated and
the sample was selected to be truly representative of all
types of LDH. Sixteen other participants assessed as not
having a disc herniation were randomly selected to par-
ticipate in the agreement analysis as controls for com-
parison. Only one MRI per patient was selected among
the three MRIs taken at the three available time-points.

MRI

MRI scans were performed with an open, low field 0.2 T
magnetic resonance unit (Magnetom Open Viva, Siemens
AG, Erlangen, Germany). The lumbar spine was scanned
with participants in the supine position, using a combined
body/surface coil. Sagittal T1- and T2-weighted and axial
T2-weighted MRIs were performed with axial images
placed in the plane of the five lower discs. The following
sequences were performed at all three time-points:

e A localiser sequence of five images, 40/10/40
degrees (TR/TE/flip angle) consisting of two coronal
and three sagittal images in orthogonal planes.

e Sagittal T1-weighted spin echo, 621/26 (TR/TE),
144 x 256 matrix, 300 mm. FOV, 11 slices of 4 mm.
thickness, interslice gap of 0.8 mm., 2 acquisitions,
6 min. 1 sec. scan time.

e Sagittal T2-weighted turbo spin echo 4609/134
(TR/effective TE), 210 x 256 matrix, 300 mm. FOV,
11 slices of 4 mm. thickness, interslice gap of 0.8
mm., 2 acquisitions, 8 min. 42 sec. scan time.

e Axial T2-weighted turbo spin echo 6415/134
(TR/effective TE), 180 x 256 matrix, 250 mm. FOV,
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3 slices of 5 mm. thickness, interslice gap of 1.0
mm., 2 acquisitions, 7 min. 49 sec. scan time. Slices
were placed in the plane of the five lower discs.

To account for scoliosis and vertebral rotation, the
radiographers were instructed to align the sagittal images
in the best way possible in all three planes. This meant
that more than one sagittal series might have been
performed in cases of serious scoliosis or vertebral rota-
tion. For the purpose of this study, only the sagittal series
that had the best alignment was used for measurement.

An experienced musculoskeletal radiologist evaluated
the MRI scans of the lumbar spine from all three time-
points using a standardised evaluation protocol [50].

Raters

Inter-rater agreement was tested between two raters:
one of whom was a student enrolled in a Master degree
in clinical biomechanics (AT) who had no prior training
in the interpretation of MRIs (Rater 1); the other was an
experienced back pain researcher (TS]) with extensive
experience in interpreting MRIs for research purposes
(Rater 2). These raters were purposely chosen to repre-
sent an inexperienced, and an experienced, interpreter of
MRI. The intra-rater agreement was tested between
measures performed by Rater 1.

Development of measurement method

Various methods for measuring the anatomical structures
from MRI investigated in the current study have been
reported previously [7-10,30-38,48,51-72] (Additional file
1). None of these articles described an ideal method for
detecting the longitudinal change in size of LDH. A new
method was therefore developed based on knowledge
from the literature and the experience of the authors (AT,
PK & TS]J).

Sagittal T2-weigthed MRIs were chosen for the mea-
surements. We chose to use sagittal images because only
three axial slices were available for each disc level in this
study. The T2- rather than the T1-weighted sequence
was chosen because of the increased contrast between
the cerebrospinal fluid and the posterior part of the
intervertebral disc and dural sac. Measures of length,
cross-sectional area and volume were taken at the disc
levels 1L3-L4, L4-L5 and L5-S1.

The following length measurements were defined: an-
terior and posterior intervertebral height (AIVH, PIVH),
and the horizontal dimensions of the intervertebral disc
(IVDL), anterior and posterior disc material extending
beyond the corners of the vertebra (ADML, PDML) and
dural sac. From these measures it was possible to calcu-
late cross-sectional areas (CSAs): CSA of the anterior
intervertebral height (CAIH), CSA of the posterior inter-
vertebral height (CPIH), CSA of the intervertebral disc
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(CIVD), CSA of the anterior disc material (CADM),
CSA of the posterior disc material (CPDM)s, and CSA
of the dural sac (CDS). Furthermore, volume measure-
ments were also defined for the anterior and posterior
disc material that extended beyond the vertebral rim.
The definitions of measurement parameters and descrip-
tions of their mode of application are shown in Figure 1
and Table 1.

Training of raters

For the training sessions, 10 participants from the final
data collection period, who were judged by the radiolo-
gist to have LDH only at this time point, were randomly
selected for training. Prior to the actual agreement study,
each rater reviewed the 10 cases independently, after
which the cases were collectively reviewed and consen-
sus reached on the measurement procedures.

Measurements

All measurements were evaluated for the appropriate
disco-vertebral segments on each sagittal T2-image from
the first left image with a visible pedicle (start slice) to
the last right image with a visible pedicle (end slice), de-
lineating the bottom and top of an intervertebral foram-
ina (Figure 1). All images were magnified between
1100%-1200% during measurements, showing the rele-
vant intervertebral disc horizontally on the screen. For
brightness and contrast, default settings of images were
used. Length measurements were conducted using the
OsiriX ‘length-tool’. Length measurements taken from
all included sagittal MRIs from every structure were
used for calculating the CSAs of those structures
(Figures 1 and 2). Volume measurements were calcu-
lated by means of OsiriX measurement software using
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the ‘pencil-tool’ for manually tracing regions of interest
(ROIs) from all slices on each sagittal image, and the
‘Compute volume...” tool (Figures 2 and 3).

Insertion positions on the corners of the vertebrae
were defined as the most anterior point for anterior cor-
ners, and the most posterior point for posterior corners.
Possible osteophytes were regarded as part of the verte-
bral body, as delineation of these was challenging. Inser-
tion positions on the boundaries between structures
were defined by the point showing the most contrast be-
tween structures (Figure 1). The tracing of disc material
areas, used for calculating volumes, was defined as the
dark visual material located anteriorly or posteriorly to
the already inserted line for disc height (Figure 3). Disc
material protruding inferiorly or superiorly was included
until visual delineation became indistinct, because alter-
native ways of distinguishing outlines of disc material
and its segregation from adjacent longitudinal ligaments
were all more challenging. A three-dimensional illustra-
tion of the approach for measuring and calculating
structures is shown in Figure 2.

To avoid potential bias due to differences of equipment
and software both raters used Apple 13” MacBooks with
integrated touchpads. The free open-source measurement
software OsiriX (version 4.1.2) was used by both raters.
This version of OsiriX is designed for scientific use [73].

Data generated from length and volume measurements
were stored as comma-separated values (CSV) files, using
the OsiriX ROI plugin-tool ‘export ROI'. CSV files were
named with identification number, segment number, and
the first and last section numbers of the MRI scan. In
scans containing sections with fewer measurements of
dural sac length, additional naming information was in-
cluded. This naming added brackets following the initial

Figure 1 Positioning of measured structures (a-i); (a-b) Anterior intervertebral height; (c-d) Posterior intervertebral height; (e-f)
Anterior disc material; (f-g) Intervertebral disc; (g-h) Posterior disc material; (h-i) Dural sac.




Table 1 Abbreviations and definitions for measurement parameters

Measurements & calculations

Definitions of measurement parameters

Details of measurement execution

Length measurements

Anterior intervertebral height (AIVH)
Posterior intervertebral height (PIVH)
Intervertebral disc length (IVDL)

Anterior disc material length (ADML)

Posterior disc material length (PDML)

Antero-posterior dural sac length (ADSL)

Cross-sectional area (CSA) calculations

CSA of anterior intervertebral height (CAIH)

CSA of posterior intervertebral height (CPIH)

CSA of intervertebral disc (CIVD)

CSA of anterior disc material (CADM)
CSA of posterior disc material (CPDM)s
CSA of dural sac (CDS)

Volume measurements

Volume of anterior disc material (VADM)s

Volume of posterior disc material (VPDM)s

Distance between anterior-superior and anterior-inferior
corners at vertebrae located at relevant intervertebral disc

Distance between posterior-superior and posterior-inferior
corners at vertebrae located at relevant intervertebral disc

Distance between anterior and posterior boundaries
of intervertebral disc

Distance between anterior and posterior boundaries
of anterior herniated disc material

Distance between anterior and posterior boundaries
of posterior herniated disc material

Distance between anterior and posterior
boundaries of dural sac

Sum of areas estimated by the product of length measurements
of anterior intervertebral height, slice thickness, and inter-slice
gap distance (Figure 2a)

Sum of areas estimated by product of length measurements of
posterior intervertebral height, slice thickness, and interslice
gap distance (Figure 2¢)

Sum of areas estimated by product of length
measurements of intervertebral disc, slice thickness, and
interslice gap distance (Figure 2b)

Sum of areas estimated by product of length measurements
of anterior disc material, slice thickness, and interslice gap distance

Sum of areas estimated by product of length measurements of
posterior disc material, slice thickness, and interslice gap distance (Figure 2d)

Sum of areas estimated by product of length measurements of
dural sac, slice thickness, and interslice gap distance

Calculated volume of anterior disc material,
from tracing of sagittal areas in all slices

Calculated volume of posterior disc material,
from tracing of sagittal areas in all slices

OsiriX ‘length-tool” between most anterior point at superior corner
and most anterior corner at inferior corner (Figure 1: a-b)

OsiriX ‘length-tool” between most posterior point at superior corner and
most posterior corner at inferior corner (Figure 1: c-d)

OsiriX ‘length-tool” between midway of AIVH and midway
of PIVH (Figure 1: f-g)

OsiriX “length-tool” between most anterior located boundary of anterior
disc material and midway of AIVH. Linear continuation of IVDL (Figure 1: e-f)

OsiriX ‘length-tool” between midway of PIVH and most posterior
located boundary of posterior disc material. Linear continuation of
IVDL (Figure 1: g-h)

OsiriX ‘length-tool” between most posterior located boundary
of posterior disc material and most posterior located boundary
of dural sac. Linear continuation of PDML (Figure 1: h-i)

Calculation of CSA using all slices for AIVH length
measurements. (Additional file 2: Calculating software)

Calculation of CSA using all slices for PIVH length measurements.
(Additional file 2: Calculating software)

Calculation of CSA using all slices for IVDL length measurements.
(Additional file 2: Calculating software)

Calculation of CSA using all slices for ADML length measurements.
(Additional file 2: Calculating software)

Calculation of CSA using all slices for PDML length measurements.
(Additional file 2: Calculating software)

Calculation of CSA using all slices for ADSL length measurements.
(Additional file 2: Calculating software)

OsiriX ‘pencil-tool” tracing area of anterior disc material anterior of AIVH
at all chosen slices. Osirix ‘Compute volume..." tool for volume
read-out (Figure 3: a)

OsiriX‘pencil-tool” tracing area of posterior disc material posterior
of PIVH at all chosen slices. Osirix ‘Compute volume..."
tool for volume read-out (Figure 3: b)

Abbreviations used throughout the study, detailed definition of all measurement parameters, and details of measurement execution listed in sequence applied.
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Figure 2 Schematic drawing of 3D cross-sectional areas (CSA)
and volume of disc measures from sagittal image slices. a) CSA
of anterior intervertebral height (AIVH), b) CSA of intervertebral disc
(CIVD), ¢) Volume of posterior disc material (VPDM) and d) CSA of
posterior disc material (CPDM).

section’s numbers containing missing dural sac identifiers.
CSV files were further converted into XLSX files and
converted into spread-sheets by customised software
(Additional file 2) designed specifically for this study by an
engineer (SSC) at the Institute of Sports Science and Clin-
ical Biomechanics at the University of Southern Denmark,
Odense, Denmark. The customised software calculated
the length from the X, Y coordinates from the measure-
ments. Calculation of CSA included the number of slices
measured slice thickness, as well as the interslice gap. The
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CSA of the anterior intervertebral height (CAIH) and the
CSA of the posterior intervertebral height (CPIH) showed
the CSA in the frontal plane and the remaining CSA in
the axial plane (Figure 2).

Measurement data extracted by the custom-made soft-
ware and stored in Excel were checked for consistency
against the original ROI files supplied by OsiriX. All calcu-
lated results were screened for obvious errors by compar-
ing them with the ROI files (Figure 4). Errors due to any
altered order of measurements were manually corrected.

Blinding

To enhance the quality and applicability of the study, the
raters were blinded in several ways [74]. Each rater was
blinded to the findings of the other rater during measure-
ments in the inter-rater analysis. In the intra-rater analysis,
the rater was blinded to his own prior measurements. This
was achieved by storing the data from the first measure-
ment on a portable flash memory stick, which was stored
by another project colleague. The order of participants
was randomly changed between the two intra-rater meas-
urement sessions. There was an 11-day interval between
the first and second measurement sessions to lessen the
likelihood of recognition of participants. All participants
were anonymised for name, birth date, project ID, MRI ac-
cess number, examination date, gender, and scan location.

Data analysis

An important issue when comparing measures is whether
they are performed on the same slices. Therefore, we
recorded all slice numbers and compared the raters’ selec-
tions. The intra- and inter-rater agreement about the

vertebral corners and visual boundaries completes the outlining.

Figure 3 lllustration of outlining used for volume measurements. Outlining regions of interest in sagittal areas of a) anterior and b) posterior
disc material. Volume calculated from combined areas from all slices, slice thickness, and interslice gaps. The pre-set boundary between the
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Figure 4 Examples of stored measurement images, used in data validation. Measurements stored as regions of interest during measurements
were used for data validation. Single measurements were localised if needed and were checked against each other to ensure correct results. Images
show a set of measurements with somewhat poor agreement between two measurements, and one with almost perfect agreement.

selection of the first (1, 2, 3 or 4) and last slice (6, 7, 8
or 9) for measuring sagittal images (disc parameters and
dural sac), were analysed using weighted Kappa statistics
and reported as weighted Kappa coefficients (K,,) with
95% CI. Since our focus was on the between-rater agree-
ment of the measurements, we only compared measures
that we performed on the same slice. For volume mea-
surements and CSA calculations, the sets of data from all
subjects where the start and end slice were not the same
were excluded from the analysis.

The intra- and inter-rater agreement of the length and
volume measurements, as well as the CSA calculations,
were analysed using Bland & Altman’s [41] LOA. LOA is
based on graphical techniques and simple calculations,
and provides a plot of differences between the means of
the measures, a bias shown as the mean difference, as well
as the SD of the differences. This enables the calculation

of 95% LOA to define ranges within which most differ-
ences between measures will lie (Figure 5). The 95% CI
was reported to describe the precision of the mean differ-
ence (bias). Bias was considered present if the 95% CI did
not include zero. Examples of good and poor results are
given in Figures 6 and 7.

Furthermore, LOA were presented as a proportion of
mean values for each structure. The proportion was calcu-
lated as follows: ((upper LOA +(-1*(lower LOA))/the
mean)*100. To the best of our knowledge, no reference
standard for an acceptable cut-off proportion exists. There-
fore, we arbitrarily considered percentages lower than 50%
as an indicator of acceptable precision.

Intra- and inter-rater reliability was evaluated with
ICC type 2.1 [75]. These statistical analyses were
conducted with STATA statistical software package Ver-
sion 12.1 [76].

Limits of Agreement

5
1

Difference between raters
0
1

-5

0 2 4

Me-an of raters 1 a-nd 2

6 .8 1

95% limits of agreement

mean difference

Figure 5 The Bland and Altman's plot. The y-axis shows the difference between raters’ measurements, and the x-axis shows the mean value of
both raters’ measurements. The purple line shows the mean difference between measurements. Red lines show the 95% Limits of Agreement,
between which 95% of all measurement differences are located.
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Anterior intervertebral distance
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T
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x Case L3-L4
x Case L5-S1
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= Case L4-L5
o Control L3-L4
o Control L5-S1

Figure 6 Bland and Altman’s plot. Example of a good result for length of anterior intervertebral distance.

Sample size considerations

A Kappa power calculation using the formula n=2k>
from Haas et al. [77] for four response option categories
estimated a required sample size of 32 participants. For
each participant, approximately eight measurements
were made for each structure.

A post hoc estimation of the precision of the LOA was
also performed based on the formula suggested by Bland
and Altman [41,78] and the standard deviations from
the current study. Based on this, the 95% CI for LOA
was 0.21 times the standard deviation (SD) for the 257
length measurements (all < 0.26 mm), 0.69 times the SD

for the 24 intra-rater CSA calculations (all < 13.2 mm?),
and 0.88 times the SD for the 15 inter-rater volume mea-
surements (all < 262 mm?®). These figures indicate the
sample size to be sufficient for acceptable precision of
LOA for the length measures and the CSA measures but
not the volume measures.

According to Bonett, an approximate sample of 15 is
needed for estimating ICC with an expected coefficient
of 0.9, an alpha level of 5%, a width of 0.2, and two cat-
egories [79]. The number of participants and measures
exceeded that which was needed for satisfactory accur-
acy for evaluating reliability.

Volume of anterior disc material

Mean of rater A and B in cm3

2
5®
£
m
T Q o °
2 x
©
< %o *
o~ x
= x
W
S x °
o N
(]
5 ° x
o
Lo
£

T T

1 2

x Case L3-L4
x Case L5-S1

o Control L4-L5

= Case L4-L5
o Control L3-L4
o Control L5-S1

Figure 7 Bland and Altman’s plot. Example of a poor result for volume of anterior disc material.
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Factors that compromise agreement

After analysis, the graphs depicting LOA were examined
and outliers identified by visually distinguishing meas-
urement differences that were far above or below the
LOA on the graphs. These measurements were com-
pared with the ROI files to identify possible reasons for
‘out of range’ measurements and reported in a narrative
form. An example of comparison is given in Figure 4.

Post hoc analysis

Due to poor inter-rater agreement on the start- and end-
slices in the original analysis, a post-hoc re-analysis was
undertaken. The definitions of the start- and end-slices
were revised to include the requirement of visualisation of
a full pedicle. This second inter-rater evaluation and
weighted Kappa analysis of start- and end-slice for all
structures, excluding the dural sac, were performed using
the new criterion. Length and volume measurements were
not repeated.

Results

Description of all measured parameters

In total, the lumbar MRIs from 32 participants were in-
cluded in this study for evaluation of both intra- and
inter-rater agreement and reliability. There were 17 fe-
males and 15 males, all aged between 40 and 49 years.
Of all the measurements conducted, 10 were on segment
level L3-L4, 12 on segment level L4-L5 and 10 on seg-
ment level L5-S1. Of all the available posteriorly located
disc materials, 12 were classified as normal, 4 as bulged
5 as focal protrusions, 5 as broad-based protrusions, 5 as
extrusions and 1 as sequestration.

Intra-rater agreement

Description of measured parameters

For length measurements, 258 slices were included in
the analysis for each parameter. For CSA calculations
and volume measurements, 24 participants were in-
cluded in the analysis for each parameter and eight par-
ticipants were excluded due to differing numbers of
slices. The exception was for CSA calculation for ADSL,
which included 25 participants in the analysis and simi-
larly excluded seven participants due to differing num-
bers of slices.

Start- and end-slice on measurements

Weighted Kappa for the choice of start-slice on dural sac
length measurements was (K, (95% CI)): 0.84 (0.65 - 0.97)
and on remaining structures (K,, (95% CI)): 0.82 (0.60 -
0.97)). Weighted Kappa for the end-slice on dural sac
length measurements was (K,, (95% CI): 0.87 (0.71 -
0.97) and on all remaining structures was (K,, (95% CI):
0.71 (0.43 - 0.93)). Cross tabulations are available in
Additional file 3.
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Measurements of length

The mean difference of all length measurements ranged
between —0.1 mm and 0.2 mm, with 95% CI ranging be-
tween —0.2 mm and 0.3 mm. LOA ranged between [-1.0;
1.0] mm and [-2.0; 2.3] mm, and between 6.8% and 62.9%
of mean values (Table 2 and Additional file 4).

Estimation of cross-sectional area

The mean difference of all CSA calculations ranged be-
tween -3.8 mm? and 6.2 mm?, with 95% CI ranging be-
tween -11.5 mm? and 14.3 mm?® LOA ranged between
[-21.3; 18.8] mm? and [-31.2; 43.7] mm? and be-
tween 3.6% and 40.1% of mean values (Table 2 and
Additional file 4).

Measurements of volume

Mean differences for both volume measurements
were —100 mm? and -47 mm?, with 95% CI ranging
between —204 mm?® and 6 mm®. LOA ranged between
[293; 199] mm® and [-582; 382] mm?, and between 37.3%
and 45.1% of mean values (Table 2 and Additional file 4).

Intra-rater reliability

ICCs ranged from 0.90 (95% CI 0.88-0.92) to 0.99 (0.99-
1.00) for length measurements and from 0.95 (0.89-0.98)
to 1.00 (1.00-1.00) for CSAs. ICCs for measurement of
volume were 0.95 (0.88-0.98) for anterior disc material
and 0.95 (0.89-0.98) for posterior disc material (Table 3).

Inter-rater agreement

Description of measured parameters

For length measurements, 257 slices were included in
the analysis for each parameter. For CSA calculations
and volume measurements, 15 participants were in-
cluded in the analysis for each parameter and 17 partici-
pants were excluded due to differing numbers of slices.
The exception was the CSA calculation for ADSL, which
included eight participants in the analysis and excluded
24 participants due to differing numbers of slices.

Start- and end-slice for measurements

Weighted Kappa for the choice of start-slice on dural sac
length measurements was (K, (95% CI): 0.22 (0.08 - 0.42)
and on remaining structures was (K, (95% CI): 0.35 (0.17 -
0.56)). Weighted Kappa for the choice of end-slice on dural
sac length measurements was (K, (95% CI): 0.22 (0.05 -
0.43) and on all remaining structures (K,, (95% CI): 0.37
(0.08 - 0.66)). Post hoc analysis for start- and end-slice on
all structures except dural sac showed weighted Kappa for
start- (K, (95% CI): 0.56 (0.29 - 0.78)) and for end-slice (K,
(95% CI): 0.60 (0.35 - 0.81)). Cross tabulations are available
in Additional file 3.
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Table 2 Intra-rater measures agreement results
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Measurement n (slices) Mean (mm) Standard Mean difference 95% LOA (mm) LOA as proportion

deviation (mm) (bias) [95% CI] (mm) of mean values (%)
Length - AIVH 258 14.7 1.1 0.2 [0.0; 0.3] -20;23 293
Length - PIVH 258 9.5 038 0.1[0.0;0.2] -1516 326
Length - IVDL 258 311 0.5 —-0.1 [-0.1; 0.0] -1.1;10 6.8
Length - ADML 258 35 06 0[-0.1;0.1] -1.1;11 62.9
Length - PDML 258 36 0.5 0 [-0.1; 0.1] -10;10 556
Length - ADSL 227 85 0.8 —-0.1 [-0.2; 0.0] -16;14 353
n (participants) (mm?) (mm?) (mm?) (mm?) (%)
Area - CAIH 24 5126 19.1 6.2 [-1.8; 14.3] —31.2; 437 14.6
Area - CPIH 24 3276 11.7 4.5 [-04; 94] —184; 274 14.0
Area - CIVD 24 11013 10.2 -1.2[-5.5; 3] -21.3;188 36
Area - CADM 24 11838 102 1[-33;53] -19.0; 21.1 338
Area - CPDM 24 1218 12.5 -1.6 [-6.9; 3.7] —26.0; 22.8 40.1
Area - CDS 25 2679 186 -38[-115;39] —403; 32.7 27.2
(mm?) (mm?) (mm?) (mm?) (%)
Volume - VADM 24 2136.7 246 —100 [-204; 4] —582; 382 451
Volume - VPDM 24 1314.8 126 —47 [-100; 6] —293; 199 374

Number of slices measured for length, and participants measured for cross-sectional area and volume measurements, overall mean values, standard deviation,
mean difference between measurements with 95% confidence intervals (Cl), 95% limits of agreement (LOA), and LOA as a proportion of mean values. Due to
absence of dural sac at certain otherwise measured slices, a lower number of slices were measured. Participants with unequal start- and end-slices were excluded

from the analyses, leading to varying numbers of included participants.

Table 3 Intra-rater measures reliability results

Measurement n (slices) ICC [95% Cl]
Length - AIVH 258 091 [0.88, 0.93]
Length - PIVH 258 0.90 [0.88, 0.92]
Length - IVDL 258 0.99 [0.99, 1.00]
Length - ADML 258 0.95 [0.94, 0.96]
Length - PDML 258 0.94 [0.92, 0.95]
Length - ADSL 227 0.98 [0.98, 0.99]
n (participants)

Area — CAIH 24 0.99 [0.98, 1.00]
Area — CPIH 24 0.98 [0.96, 0.99]
Area - CIVD 24 1.00 [1.00, 1.00]
Area - CADM 24 0.97 [0.94, 0.99]
Area - CPDM 24 0.95 [0.89, 0.98]
Area - CDS 25 0.97 [0.93, 0.99]
Volume - VADM 24 0.95 [0.89, 0.98]
Volume - VPDM 24 0.95 [0.88, 0.98]

Number of slices measured for length and participants measured for cross-
sectional area and volume measurements, intraclass correlation coefficient
(ICC), and accompanying 95% confidence intervals (Cl). Due to absence of
dural sac at certain otherwise measured slices, a lower number of slices were
measured. Participants with unequal start- and end-slices were excluded from
the analyses, leading to varying numbers of included participants.

Measurements of length

The mean difference of all length measurements ranged
between —0.7 mm and 0.3 mm, with 95% CI ranging be-
tween —0.8 mm and 0.4 mm. LOA ranged between [-1.1;
14] mm and [-2.6; 2.0] mm, and between 9.7% and
105.9% of mean values (Table 4 and Additional file 4).

Estimation of cross-sectional area

The mean difference for all CSA calculations ranged be-
tween —19.5 mm? and 6.4 mm?, with 95% CI ranging be-
tween —31.7 mm” and 19.7 mm® LOA ranged between
[-10.8; 16.4] mm? and [-64.6; 27.1] mm?, and between
4.5% and 48.4% of mean values (Table 4 and Additional
file 4).

Measurements of volume

Mean differences were 131 mm?® and 392 mm?® with
95% CI ranging between -33 mm® and 508 mm®. LOA
ranged between [-17; 801] mm?® and [-450; 713] mm?,
and between 44.7% and 104.1% of mean values (Table 4
and Additional file 4).

3

Inter-rater reliability

ICCs ranged from 0.73 (0.69-0.79) to 0.98 (0.90-0.99) for
length measurements and from 0.88 (0.69-0.96) to 0.99
(0.97-1.00) for CSAs. ICCs for measurement of volume
were 0.57 (0.13-0.83) for anterior disc material and 0.90
(0.00-0.98) for posterior disc material (Table 5).
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Table 4 Inter-rater measures agreement results

Measurement n (slices) Mean (mm) Standard Mean difference 95% Limits of agreement LOA as proportion of
deviation (mm) (bias) [95% CI] (mm) (LOA) (mm) mean values (%)
Length - AIVH 257 149 1.2 -0.5 [-0.7, -04] -23,18 309
Length - PIVH 257 96 12 —-0.3 [-04;-0.2] -26; 20 479
Length - IVDL 257 312 0.8 —-0.7 [-0.8; -0.6] -22;08 9.7
Length - ADML 257 34 06 0.1 [0.0; 0.2] -1.1;14 736
Length - PDML 257 34 09 0.3 [-0.2; 04] -1.5; 2.1 1059
Length - ADSL 229 8 1.1 0.2 [0.0; 0.3] -20;23 538
n (participants) (mm2) (mm?) (mm?) (mm?) (%)
Area - CAIH 15 568.2 234 —187 [-31.7; -5.7] —64.6; 27.1 16.2
Area - CPIH 15 362.8 173 —13.3 [-22.9; -3.7] —47.3; 20.7 18.7
Area - CIVD 15 11904 13.7 -19.5 [-27.1; -11.9] —464; 74 45
Area - CADM 15 126.2 7 28 [-1.1;6.7] -108; 164 216
Area - CPDM 15 1217 15 64 [-2.0; 14.7] —23.1; 358 484
Area - CDS 8 286 17.8 4.8 [-10.1; 19.7] -30.1; 39.8 244
(mm?) (mm?) (mm?) (mm?) (%)
Volume - VADM 15 1830.3 209 392 [277; 508] -17; 801 447
Volume - VPDM 15 1176 297 131 [-33; 296] —450; 713 104.1

Number of slices measured for length and participants measured for cross-sectional area and volume measurements, overall mean values, standard deviation,
mean difference between measurements (bias) with 95% confidence intervals (Cl), 95% limits of agreement (LOA), and LOA as a proportion of mean values. Due
to absence of dural sac at certain otherwise measured slices, a lower number of slices were measured. Participants with unequal start- and end-slices were
excluded from the analyses, leading to varying numbers of included participants.

Bias estimates

The 95% CI for mean differences suggested no statisti-
cally significant bias for intra-rater measures, and sug-
gested a possible significant bias in a negative direction

for seven out Of 14 inter-rater parameters' Table 5 Inter-rater measures reliability results

Measurement n (slices) ICC [95% CI]
Factors that compromise agreement Length - AIVH 257 0.88[0.82 - 0.92]
A total of 27 outliers consisting of single intra-rater mea- | ongth - PIVH 257 081 [0.76 - 085]
surements and 20 outliers consisting of single inter-rater Length - VDL 257 098 [090 - 099]
measurements were seen from the LOA plots. Three rea-
. o Length - ADML 257 0.93 [091 - 0.95]
sons were identified:
Length - PDML 257 0.73 [0.64 - 0.79]
1) A different interpretation of vertebral corners at Length - ADSL 229 096 [0.95 - 0.97]

both the anterior and posterior locations, as well as
superior and inferior locations was the reason for

n (participants)

Area - CAIH 15 0.96 [0.81 — 0.99]

seven AIVH and PIVH outliers, nine IVDL outliers, Area - CPIH 15 093 [068 - 0.98]
one ADML outlier, and three PDML outliers. This

may have been the reason for the IVDL and PDML Area - CVD N 0991078 = 1001

outliers due to their dependence on AIVH and Area - CADM 1> 099 [0.97 - 1.00]

PIVH measurements. Area - CPDM 15 0.88 [0.69 - 0.96]

2) Inconsistent distinction between structural Area - CDS 8 0.95 [0.79 - 0.99]

boundaries due to lack of contrast was identified as Volume - VADM 15 090 [0.00 — 098]

inherent in three separate causes for outliers. The Volume - VPDM 15 057 [0.13 - 083]

first was that five outliers were caused by a different
interpretation of the anterior boundary of ADML.
The second was that six outliers were caused by a
different interpretation of the boundary between
PDML and ADSL. The third was that fifteen outliers

Number of slices measured for length and participants measured for cross-
sectional area and volume measurements, intraclass correlation coefficient
(ICC), and accompanying 95% confidence intervals (Cl). Due to absence of
dural sac at certain otherwise measured slices, a lower number of slices were
measured. Participants with unequal start- and end-slices were excluded from
the analyses, leading to varying numbers of included participants.
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were caused by a different interpretation of the
posterior boundary of ADSL.

3) A single outlier for each of IVDL, ADML, PDML
and ADSL was identified as an error in
measurement execution. These errors were included
in the CSAs and therefore influenced their results.

Discussion

This study reports a new method for measuring lumbar
disc-related structures for use in research and in clinical
practice. Intra-rater reliability in selecting start- and end-
slice was substantial and inter-rater reliability changed
from poor to moderate after revision of the method [80].
The Bland and Altman’s LOA showed very little bias
(mean difference) and a small range for all intra-rater
measurements and calculations. Reliability was high with
most ICCs > 0.90. For inter-rater measurements and cal-
culations the Bland and Altman’s LOA showed slightly
higher bias and slightly higher ranges, with the exception
of volume measurements, which had considerably larger
bias and ranges. Reliability was slightly lower but most
ICCs were > 0.73. The uncertainty around volume mea-
sures was considerable. In general, LOA as a percentage of
the mean values gradually decreased with increased size of
the measured structures.

The results indicate that when measuring very small
structures (e.g. ADML and PDML) on MRI, the changes
over time have to be relatively large in order to detect
changes. Combining length measures into volume mea-
sures reduces the LOA as a proportion of the mean. The
measurement of volume by manual tracing seems to be
dependent on the observer and the VPDM seems to be
particularly problematic to agree upon.

The intra-rater measurements and calculations showed
better agreement than inter-rater measurements, al-
though the differences were not large. This indicates a
good consensus regarding the anatomical delineation be-
tween length measurements by the same rater, but also
acceptable consensus between the two raters. The same
does not apply with volume measurements, where the
inter-rater agreement was not acceptable. It seems the
cumulative error in the marking of multiple anatomical
structures was not accurate enough between multiple
raters, resulting in differences that were unacceptably
high. The same applies for start- and end-slice, where it
seems agreement between raters is poor unless sufficient
consensus on measurements is made beforehand. This
appears to be due to difficulty in determining the slice
delineating the boundary of the foramina, when using
the criterion of visualisation of a fully visible pedicle, a
criterion previously described in the literature [81].

Outliers found during the validation of the results
could generally be traced to two main reasons: one being
inexact positioning of vertebral corners; the other being
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difficulties in distinguishing between the anterior or pos-
terior boundaries between structures. As for positioning of
vertebral corners, a possible interfering factor could be the
presence of osteophytes, by their modifying the visual ap-
pearance of the vertebra. For future use of this method,
specification in advance of measurements, and persistent
implementation of detailed definitions for aforementioned
positionings, should be conducted by all raters. We were
not able to find articles that definitively discussed any of
these factors regarding similar problems with positioning
or boundary distinction. Videman et al. [82] previously
used a more thorough method for defining ‘theoretical’
vertebral corners. However, such an approach is likely to
be more complicated and time-consuming,.

A similar method of measuring the spinal canal was
performed by Dora et al. [8]. They used sagittal MRIs
and ICC and reported good inter-rater reliability
(ICC>0.95). Other studies have used similar methods for
measuring the spinal canal or the dural sac, but have not
documented any kind of reproducibility [9,28,63,68,69].
A similar method is also used for measuring disc hernia-
tions and the spinal canal in some studies [27-29], but
the method is described inadequately, and there is no
reporting of analysis of agreement or reliability. One
study performed similar quantitative measurements of
similar structures on MRIs using LOA for determining
agreement [48]. In this study, one finding on interverte-
bral disc length is comparable with the current study
and indicates similar LOA. That study sample consisted
of children and therefore their population was not dir-
ectly comparable with ours. A study that compared re-
sults of MRIs in different positions showed anteriorly
and posteriorly herniated disc material length measure-
ments with almost exactly the same values [83]. A direct
comparison with other studies is difficult, as this is the
first study, to our knowledge, with the current statistical
approach and such a detailed description of the method.

Agreement, together with reliability, is generally embed-
ded in the expression reproducibility. In the literature,
agreement and reliability are often used interchangeably,
although their foci are different. Agreement focuses on
measurement error when the focus is change in health sta-
tus over time, while reliability is concerned with measure-
ment error plus the variability between study objects and
the focus is distinction between persons [45]. deVet et al.
recommend reporting agreement parameters such as
LOA, and further, when reporting reliability using ICC,
they should be reported together with error estimates such
as SEM [45]. This study uses both agreement and reliabil-
ity, but the clear distinction between their use and mean-
ing has been preserved.

Our review of the available literature (Additional file 1)
showed a common pattern in methodological limitations
through the use of inappropriate methods for longitudinal
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measurements, inadequate descriptions of methods, as
well as unsatisfying statistical analyses of agreement. Out
of 34 studies, only 17 reported reproducibility, and only
one of these studies [48] used an appropriate statistical
method — in that case, LOA. Eight of the remaining stud-
ies [8,33,34,38,48,52,55,57] used ICC, which is a measure
of reliability, not agreement [45]. Furthermore, only one
out of these eight studies reported an error estimate [55].

We interpret our results as indicating that the measure-
ment method used in this study is suitable for further use,
with the exception of volume measurements. The method
also makes it possible to validate data regarding errors
made during measurements and those made during calcu-
lations, as well as indications for how to correct relevant
errors in advance of the analysis. This data validation
method may also be used for localising the reasons for out-
liers. As seen in the post-hoc analysis, a focus on consensus
between raters is important for obtaining agreement about
start- and end-slices. Our study is likely to be useful for
future research because the method is appropriate for lon-
gitudinal measurements it contains a full and detailed
description of the method and includes adequately con-
ducted agreement and reliability analyses. In future studies
and in clinical practice, this method can be used to detect
changes larger than the LOA in disc morphology over time
in individuals and between groups of patients. However,
the size of the measure of interest has to be considered,
since the relative precision increases with the size of the
measurement (LOA as a percentage of the mean, Tables 2
and 4). In our research group, this method will form the
basis for a series of research projects with the aims of in-
vestigating the changes in disc morphology over time and
their association with clinical outcomes.

There could be a number of reasons for the observed
poor agreement of inter-rater volume measurements. A
possible explanation is a lack of certainty when manu-
ally tracing the anterior and posterior herniated disc
material — an issue reported in earlier studies address-
ing volume measurements using MRIs [84,85]. Another
explanation is a possible difficulty in separating herni-
ated disc material from the longitudinal ligament, as
these structures appear with almost the same signal in-
tensity on MRL

One limitation of this study may be the low resolution
of the MRIs and the high magnification levels used.
With a 144x256 matrix, 300 mm field of view and 4 mm
slice thickness [49], the DICOM reader software digitally
reconstructed the high detail of anatomical structures
visible on the MRIs. This, in addition to the high magni-
fication levels, increases the measurement precision but
may reduce the accuracy of the image’s representative-
ness of the actual anatomy. Any length measurement
below the size of one voxel (1.2(height) x 1.4(width) x
4.0(depth) mm) could therefore be considered relatively
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inaccurate. As for the length measurements of the anter-
ior and posterior herniated disc material, there is a pos-
sibility that most of the anterior or posterior position is
above or below the measured level, leading to possible
underestimation of disc material sizes. Furthermore, as
this study is not a test-retest study, it does not take into
account the measurement errors that would be associ-
ated with repositioning patients, diurnal variations and
the effect of activities within its estimates of intra- and
inter-rater reliability.

The original study cohort was representative of the gen-
eral population but the selection of a sample of cases and
controls for the current study may affect the generalisabil-
ity of the results. The reported means of measurements
will not reflect those of the original cohort since only 22-
25% in it had LDH. Although the prevalence of LDH, es-
pecially the more severe types, is likely to be higher in a
clinical population, we believe that the measurement
method will work in clinical populations. Our aim was to
establish reproducibility and reliability, not to report
prevalence or reference values for either a general or a
clinical population.

It is possible that the ICCs and weighted Kappa values
are inflated in this study, due to the large variability in
the measures when purposefully selecting a sample rep-
resentative of all types of LDH and of controls without
LDH. The results may also be inflated by excluding a
number of the more lateral MRI slices, when there was
disagreement on start- and end-slice. The reason for this
is that the LOA were relatively smaller for the larger
structures. Another factor that may have increased the
reproducibility and reliability is that only two raters were
performing the measurements. However, when compar-
ing ICCs in our study with those in other studies using
the same measure of reliability, the results were very
similar [8,34,38].

In this study, we have performed several statistical
analyses with an alpha level of 5% which by definition
increases the risk of at least one chance finding in every
twenty tests. However, the trends for the LOA and the
ICCs are all in the same direction for the included mea-
sures. The variability in lumbar levels, LDH and normal
discs in the study sample could lead to a suspicion that
the LOA would be different for certain subgroups. How-
ever, in the Bland and Altman’s LOA plots (Additional
file 4), colours indicate the different levels as well as
cases and controls. And when looking carefully at these,
there are no obvious differences.

The strengths of this study are the high number of sin-
gle length measurements, the carefully planned execu-
tion, the extensive review of the available literature as
well as the well-described method. The high number of
length measurements is also the basis for the CSAs. This
study also followed a structured protocol from the
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beginning and adhered throughout to guidelines for
studies of agreement [44,74]. Finally a comprehensive
description of the method is available, as is the freeware
measurement software [73]. This method also only takes
5 to 20 minutes per MRI to measure and interpret, de-
pending on equipment, software preparation, and ex-
perience. In a clinical setting, a selection of relevant
parameters such as CPDM, CPIH, and CDS may reduce
the time consumption considerably.

Conclusion

This new method of quantifying length measurements of
disc morphology and dural sac diameter from MRIs
showed good intra- and inter-rater agreement as well as
reliability. Quantitative volume measurements showed un-
acceptable agreement and reliability. However, caution
should be taken when selecting start- and end-slice, meas-
uring very small structures, and when defining anatomical
landmarks. This method for quantitative measurement of
lumbar intervertebral discs and related structures is suit-
able for testing in broader contexts, including in more di-
verse clinical samples, and in quantitative research that
involves serial measurement of anatomical structures over
multiple follow-up time periods.
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