Sample
Fifty seven students in a Bachelor of Science with Chiropractic Major program (chiropractic major: n = 53; biomedical major: n = 2; exercise physiology major: n = 2) enrolled in CHI282 Human Anatomy II at Murdoch University (Semester 2, 2015) were randomly allocated to experimental (n = 31) and control (n = 26) groups in July 2015. A random number generator was used to create a randomization list. The group allocation was placed in sequentially numbered, opaque, sealed, envelopes. Research staff not involved with teaching the students handed the envelopes to students, who then immediately opened the envelope and notified the staff of group allocation.
All students were asked to complete the Self-directed Learning Readiness Scale (SDLRS) questionnaire during their first gross anatomy laboratory session. The SDLRS is a validated self-report instrument to assess students’ readiness for self-directed learning [8]. Originally designed to measure the readiness of undergraduate nursing students for self-directed learning [8], the scale has since been used in a number of undergraduate educational settings such as medicine [9, 10]; paramedicine [11] and pharmacy [12]. The SDLRS questionnaire is a reliable and valid scale with 40-items rated on a five-point Likert scale from ‘strongly disagree’ to ‘strongly agree [8, 13]. The maximum score is 200 and a score greater than 150 indicates that students have a high readiness for self-directed learning [8, 13].
Intervention
Students in the experimental group were given access to eight iPad© mini 2 tablets pre-loaded with neuroanatomy apps for three loosely-structured (learning objectives provided in the unit syllabus) gross anatomy laboratory sessions (1.5 h each). Each device had the following neuroanatomy apps: Brain and Nervous System Pro III [14], Essential Anatomy 5 [15]; Brain and Nervous Anatomy Atlas: Essential Reference for Students and Healthcare Professionals [16] and iSurf BrainView [17].
During the first session, experimental students were given access to the apps and were suggested to identify 55 structures in matching coronal sections of a cadaver brain and a T1-weighted MRI. During the second session, some students used the available apps to help construct a plasticine brainstem model. The third session was mainly focused on the pathways of the spinal cord tracts, for which no app was particularly suitable.
Students in the control group attended the three gross anatomy laboratory sessions and had access to all the same resources except the iPads.
Anatomy assessment
Students’ knowledge of neuroanatomy was assessed using a closed-book 30 question image-based multiple choice test using the Moodle (Moodle Pty Ltd, Perth, Western Australia) quiz function. Students had 30 min to complete the summative assessment which was administered seven days after the third laboratory session. As this unit is the third and last anatomy unit taken by students, the majority of questions were higher-order (Levels 3 and 4) of the Blooming Anatomy Tool [18]. The assessment was marked automatically by Moodle Quiz. Marks were downloaded, and then matched with the SLDRS score and group number and then de-identified data prior to analysis.
Focus group
A focus group was conducted immediately after the summative assessment by a staff member who was not involved in the teaching of anatomy to the students. The focus group was held for 60 mins with seven students and was audio-recorded and notes were taken for clarification. To stimulate discussion, students were asked the following questions: (1) Do you think the use of apps enhanced your learning outcomes in the neuroanatomy wet labs? (2) Do you think there were any limitations of the apps that affected your learning outcomes in the neuroanatomy wet labs? (3) Which particular apps did you find most useful? Why? (4) Which particular apps did you find least useful? Why? and (5) Did you download and use any apps outside of the anatomy laboratory?
Statistical analysis
Data were analyzed using IBM® SPSS® Statistics package, version 21. All data were reported descriptively. Linear regression was used to examine the association between anatomy app use and neuroanatomy assessment scores. The students’ gender, previous anatomy unit scores, and SDLRS scores were entered into the regression model as potential confounder factors as they had been found to influence educational app use in previous studies [19–21]. Cronbach’s alpha was derived for the SDLRS scale.