World Health Organization. COPD: Definition [http://www.who.int/respiratory/copd/definition/en/] Accessed 23 Aug 2018.
Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2018) [https://goldcopd.org/wp-content/uploads/2017/11/GOLD-2018-v6.0-FINAL-revised-20-Nov_WMS.pdf] Accessed 23 Aug 2018.
Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–65.
Article
CAS
Google Scholar
Nici L, ZuWallack R. An official American Thoracic Society workshop report: the integrated care of the COPD patient. Proc Am Thorac Soc. 2012;9(1):9–18.
Article
Google Scholar
Agusti A, Soriano JB. COPD as a systemic disease. COPD. 2008;5(2):133–8.
Article
Google Scholar
Patel AR, Hurst JR. Extrapulmonary comorbidities in chronic obstructive pulmonary disease: state of the art. Expert Rev Respir Med. 2014;5(5):647–62.
Article
Google Scholar
Lohne V, Heer HCD, Andersen M, Miaskowski C, Kongerud J, Rustøen T. Qualitative study of pain of patients with chronic obstructive pulmonary disease. Heart Lung. 2010;39(3):226–34.
Article
Google Scholar
O'Donnell DE, Laveneziana P. Dyspnea and activity limitation in COPD: mechanical factors. COPD. 2007;4(3):225–36.
Article
Google Scholar
O'Donnell DE, Webb KA. The major limitation to exercise performance in COPD is dynamic hyperinflation. J Appl Physiol (1985). 2008;105(2):753–5.
Article
Google Scholar
Heneghan N, Adab P, Jackman S, Balanos G. Musculoskeletal dysfunction in chronic obstructive pulmonary disease (COPD): an observational study. Int J Ther Rehabil. 2015;22(3):119.
Article
Google Scholar
Wearing J, Beaumont S, Forbes D, Brown B, Engel R. The use of spinal manipulative therapy in the management of chronic obstructive pulmonary disease: a systematic review. J Altern Complement Med. 2015;22(2):108–14.
Article
Google Scholar
Engel RM, Vemulpad S. Progression to chronic obstructive pulmonary disease (COPD): could it be prevented by manual therapy and exercise during the ‘at risk’stage (stage 0)? Med Hypotheses. 2009;72(3):288–90.
Article
Google Scholar
Heneghan NR, Adab P, Balanos GM, Jordan RE. Manual therapy for chronic obstructive airways disease: a systematic review of current evidence. Man Ther. 2012;17(6):507–18.
Article
Google Scholar
Dougherty PE, Engel RM, Vemulpad S, Burke J. Spinal manipulative therapy for elderly patients with chronic obstructive pulmonary disease: a case series. J Manip Physiol Ther. 2011;34(6):413–7.
Article
Google Scholar
Engel R, Vemulpad S. The role of spinal manipulation, soft-tissue therapy, and exercise in chronic obstructive pulmonary disease: a review of the literature and proposal of an anatomical explanation. J Evid Based Complementary Altern Med. 2011;17(9):797–801.
Article
Google Scholar
Rocha T, Souza H, Brandão DC, Rattes C, Ribeiro L, Campos SL, Aliverti A, de Andrade AD. The manual diaphragm release technique improves diaphragmatic mobility, inspiratory capacity and exercise capacity in people with chronic obstructive pulmonary disease: a randomised trial. J Physiother. 2015;61(4):182–9.
Article
Google Scholar
Cruz-Montecinos C, Godoy-Olave D, Contreras-Briceño FA, Gutiérrez P, Torres-Castro R, Miret-Venegas L, Engel RM. The immediate effect of soft tissue manual therapy intervention on lung function in severe chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2017;12:691.
Article
Google Scholar
Zanotti E, Berardinelli P, Bizzarri C, Civardi A, Manstretta A, Rossetti S, Fracchia C. Osteopathic manipulative treatment effectiveness in severe chronic obstructive pulmonary disease: a pilot study. Complement Ther Med. 2012;20(1):16–22.
Article
Google Scholar
Noll DR, Degenhardt BF, Johnson JC, Burt SA. Immediate effects of osteopathic manipulative treatment in elderly patients with chronic obstructive pulmonary disease. J Am Osteopath Assoc. 2008;108(5):251–9.
PubMed
Google Scholar
Orrock PJ. Profile of members of the Australian osteopathic association: part 2; the patients. Int J Osteopath Med. 2013;12(4):128–39.
Article
Google Scholar
Chaitow L, Crenshaw K. Muscle Energy Techniques. 4th ed: Elsevier Health Sciences; 2013.
Fryer G, Morse CM, Johnson JC. Spinal and sacroiliac assessment and treatment techniques used by osteopathic physicians in the United States. Osteopath Med Prim Care. 2009;3(1):4.
Article
Google Scholar
Fryer G. Muscle energy technique: an evidence-informed approach. Int J Osteopath Med. 2011;14(1):3–9.
Article
Google Scholar
Destefano LA. Greenman's principles of manual medicine. 4th ed. Baltimore: Lippincott Williams & Wilkins; 2011.
Google Scholar
Smith M, Fryer G. A comparison of two muscle energy techniques for increasing flexibility of the hamstring muscle group. J Bodyw Mov Ther. 2008;12(4):312–7.
Article
Google Scholar
Ballantyne F, Fryer G, McLaughlin P. The effect of muscle energy technique on hamstring extensibility: the mechanism of altered flexibility. Int J Osteopath Med. 2003;6(2):59–63.
Article
Google Scholar
Schenk R, Adelman K, Rousselle J. The effects of muscle energy technique on cervical range of motion. J Man Manip Ther. 1994;2(4):149–55.
Article
Google Scholar
Schenk RJ, MacDiarmid A, Rousselle J. The effects of muscle energy technique on lumbar range of motion. J Man Manip Ther. 1997;5(4):179–83.
Article
Google Scholar
Lenehan KL, Fryer G, McLaughlin P. The effect of muscle energy technique on gross trunk range of motion. Int J Osteopath Med. 2003;6(1):13–8.
Article
Google Scholar
Fryer G, Ruszkowski W. The influence of contraction duration in muscle energy technique applied to the atlanto-axial joint. Int J Osteopath Med. 2004;7(2):79–84.
Article
Google Scholar
Putt MT, Watson M, Seale H, Paratz JD. Muscle stretching technique increases vital capacity and range of motion in patients with chronic obstructive pulmonary disease. Arch Phys Med Rehabil. 2008;89(6):1103–7.
Article
Google Scholar
Moore SD, Laudner KG, Mcloda TA, Shaffer MA. The immediate effects of muscle energy technique on posterior shoulder tightness: a randomized controlled trial. J Orthop Sports Phys Ther. 2011;41(6):400–7.
Article
Google Scholar
Sharman MJ, Cresswell AG, Riek S. Proprioceptive neuromuscular facilitation stretching. Sports Med. 2006;36(11):929–39.
Article
Google Scholar
Higgins J. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated march 2011]: The Cochrane Collaboration; 2011.
Sule K, Palekar T. Effect of static stretching and pulsed MET on accessory muscles in COPD patients: a comparitive study. International Journal Of Scientific Research And Education. 2017;5(05):6461–5.
Google Scholar
Wada JT, Borges-Santos E, Porras DC, Paisani DM, Cukier A, Lunardi AC, Carvalho CR. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial. Int J Chron Obstruct Pulmon Dis. 2016;11:2691.
Article
CAS
Google Scholar
Anand A, Narwal R, Sindhwani G. Accessory inspiratory muscles energy technique effect on pulmonary function in COPD subjects. Indian J Physiother Occup Ther. 2013;7(3):192.
Article
Google Scholar
Holland AE, Nici L. The return of the minimum clinically important difference for 6-minute-walk distance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187(4):335–6.
Article
CAS
Google Scholar
Engel RM, Vemulpad SR, Beath K. Short-term effects of a course of manual therapy and exercise in people with moderate chronic obstructive pulmonary disease: a preliminary clinical trial. J Manip Physiol Ther. 2013;36(8):490–6.
Article
Google Scholar
Engel RM, Gonski P, Beath K, Vemulpad S. Medium term effects of including manual therapy in a pulmonary rehabilitation program for chronic obstructive pulmonary disease (COPD): a randomized controlled pilot trial. J Man Manip Ther. 2014;24(2):80–9.
Article
Google Scholar
Jones PW, Beeh KM, Chapman KR, Decramer M, Mahler DA, Wedzicha JA. Minimal clinically important differences in pharmacological trials. Am J Respir Crit Care Med. 2014;189(3):250–5.
Article
Google Scholar
Galletti J, Mcheileh G, Hahne A, Lee AL. The clinical effects of manipulative therapy in people with chronic obstructive pulmonary disease. J Evid Based Complementary Altern Med. 2018;24(7):677–83.
Article
Google Scholar
Kocks JW, Tuinenga MG, Uil SM, Van den Berg J, Ståhl E, Van der Molen T. Health status measurement in COPD: the minimal clinically important difference of the clinical COPD questionnaire. Respir Res. 2006;7(1):62.
Article
CAS
Google Scholar
Carnes D, Mullinger B, Underwood M. Defining adverse events in manual therapies: a modified Delphi consensus study. Man Ther. 2010;15(1):2–6.
Article
Google Scholar
Carnes D, Mars TS, Mullinger B, Froud R, Underwood M. Adverse events and manual therapy: a systematic review. Man Ther. 2010;15(4):355–63.
Article
Google Scholar